Процесс торможения в ЦНС. Механизмы торможения

В центральной нервной системе постоянно функционируют два основных, взаимосвязанных процесса - возбуждение и торможение.

Торможение - это активный биологический процесс, направленный на ослабление, прекращение или предотвращение возникновения процесса возбуждения. Явление центрального торможения, т. е. торможения в ЦНС, было открыто И. М. Сеченовым в 1862 г. в опыте, получившим название "опыт сеченовского торможения". Суть опыта: у лягушки на срез зрительных бугров накладывали кристаллик поваренной соли, что приводило к увеличению времени двигательных рефлексов, т. е. к их торможению. Время рефлекса - это время от начала раздражения до начала ответной реакции.

Торможение в ЦНС выполняет две основные функции. Во-первых, оно координирует функции, т. е. оно направляет возбуждение по определенным путям к определенным нервным центрам, при этом выключая те пути и нейроны, активность которых в данный момент не нужна для получения конкретного приспособительного результата. Важность этой функции процесса торможения для функционирования организма можно наблюдать в эксперименте с введением животному стрихнина. Стрихнин блокирует тормозные синапсы в ЦНС (в основном глицинергические) и тем самым устраняет основу для формирования процесса торможения. В этих условиях раздражение животного вызывает некоординированную реакцию, в основе которой лежит диффузная (генерализованная) иррадиация возбуждения. При этом приспособителъная деятельность становится невозможной. Во-вторых, торможение выполняет охранительную или защитную функцию, пред охраняя нервные клетки от перевозбуждения и истощения при действии сверхсильных и длительных раздражителей.

Теории торможения . Н. Е. Введенским (1886) было показано, что очень частые раздражения нерва нервно-мышечного препарата вызывают сокращения мышцы в виде гладкого тетануса, амплитуда которого мала. Н. Е. Введенский полагал, что в нервно-мышечном препарате при частом раздражении возникает процесс пессимального торможения, т. е. торможение является как бы следствием перевозбуждения. Сейчас установлено, что его механизм заключается в длительной, застойной деполяризации мембраны, вызванной избытком медиатора (ацетилхолина), выделяющегося при частой стимуляции нерва. Мембрана полностью теряет возбудимость из-за инактивации натриевых каналов и не в состоянии ответить на приход новых возбуждений выделением новых порций медиатора. Таким образом, возбуждение переходит в противоположный процесс - торможение. Следовательно, возбуждение и торможение являются как бы одним и тем же процессом, возникают в одних и тех же структурах, с участием одного и того. же медиатора. Данная теория торможения называется унитарно-химической или монистической.


Медиаторы на постсинаптической мембране могут вызывать не только деполяризацию (ВПСП), но и гиперполяризацию (ТПСП). Эти медиаторы увеличивают проницаемость субсинаптической мембраны для ионов калия или хлора, в результате чего постсинаптическая мембрана гиперполяризуется и возникает ТПСП. Данная теория торможения получила название бинарно-химической, согласно которой торможение и возбуждение развиваются по разным механизмам, с участием тормозных и возбуждающих медиаторов соответственно.

Классификация центрального торможения. Торможение в ЦНС можно классифицировать по различным признакам:

По электрическому состоянию мембраны - деполяризационное и гиперполяризационное;

По отношению к синапсу - пресинаптическое и постсинаптическое;

По нейрональной организации - поступательное, латеральное (боковое), возвратное, реципрокное.

Постсинаптическое торможение развивается в условиях, когда медиатор, выделяемый нервным окончанием, изменяет свойства постсинаптической мембраны таким образом, что способность нервной клетки генерировать процессы возбуждения подавляется. Постсинаптическое торможение может быть деполяризационным, если в его основе лежит процесс длительной деполяризации, и гиперполяризационным, если - гиперполяризации.

Пресинаптическое торможение обусловлено наличием вставочных тормозных нейронов, которые формируют аксо-аксональные синапсы на афферентных терминалях, являющихся пресинаптическими по отношению, например, к мотонейрону. В любом случае активации тормозного интернейрона, он вызывает деполяризацию мембраны афферентных терминалей, ухудшающей условия проведения по ним ПД, что таким образом уменьшает количество выделяемого ими медиатора, и, следовательно, эффективность синаптической передачи возбуждения к мотонейрону, что уменьшает его активность (рис. 14). Медиатором в таких аксо-аксональных синапсах является, по-видимому, ГАМК, которая вызывает повышение проницаемости мембраны для ионов хлора, которые выходят из терминали и частично, но длительно ее деполяризуют.

Рис. 14. Пресинаптическое торможение (схема): Н - нейрон, возбуждаемый афферентными импульсами, приходящими по волокну 1; Т - нейрон, образующий тормозные синапсы на пресинаптических разветвлениях волокна 1; 2 - афферентные волокна, вызывающие активность тормозного нейрона Т.

Поступательное торможение обусловлено включением тормозных нейронов на пути следования возбуждения (рис. 15).

Рис. 15. Схема поступательного торможения. Т - тормозньй нейрон

Возвратное торможение осуществляется вставочными тормозными нейронами (клетками Реншоу). Импульсы от мотонейронов, через отходящие от его аксона коллатерали, активируют клетку Реншоу, которая в свою очередь вызывает торможение разрядов данного мотонейрона (рис. 16). Это торможение реализуется за счет тормозных синапсов, образованных клеткой Реншоу на теле активирующего ее мотонейрона. Таким образом, из двух нейронов формируется контур с отрицательной обратной связью, которая дает возможность стабилизировать частоту разряда мотонейрона и подавлять избыточную его активность.

Рис. 16. Схема возвратного торможения. Коллатерали аксона мотонейрона (1) контактируют с телом клетки Реншоу (2), короткий аксон которой, разветвляясь, образует тормозные синапсы на мотонейронах 1 и 3.

Латеральное (боковое) торможение. Вставочные клетки формируют тормозные синапсы на соседних нейронах, блокируя боковые пути распространения возбуждения (рис. 17). В таких случаях возбуждение направляется только по строго определенному пути.

Рис. 17. Схема латерального (бокового) торможения. Т - тормозный нейрон.

Именно латеральное торможение обеспечивает, в основном, системную (направленную) иррадиацию возбуждения в ЦНС.

Реципрокное торможение. Примером реципрокного торможения является торможение центров мышц-антагонистов. Суть этого вида торможения заключается в том, что возбуждение проприорецепторов мышц-сгибателей одновременно активирует мотонейроны данных мышц и вставочные тормозные нейроны (рис. 18). Возбуждение вставочных нейронов приводит к постсинаптическому торможению мотонейронов мышц-разгибателей.

Рис. 18. Схема реципрокного торможения. 1 - четырехглавая мышца бедра; 2 - мышечное веретено; 3 - сухожильный рецептор Гольджи; 4 - рецепторные клетки спиномозгового ганглия; 4а - нервная клетка, воспринимающая импульсы от мышечного веретена; 4б - нервная клетка, воспринимающая имульсы от рецептора Гольджи; 5 - мотонейроны, иннервирующие мышцы-разгибатели; 6 - тормозный промежуточный нейрон; 7 - возбуждающий промежуточный нейрон; 8 - мотонейроны, иннервирующие мышцы-сгибатели; 9 - мышца-сгибатель; 10 - моторные нервные окончания в мышцах; 11 - нервное волокно от сухожильного рецептора Гольджи.

Явление торможения в нервных центрах (или центрального торможения) было впервые открыто И. М. Сеченовым в 1862 г., обнаружившим возникновение торможения спинальных центров лягушки при раздражении структур головного мозга. Значение этого процесса было рассмотрено им в книге «Рефлексы головного мозга» (1863).

Опуская лапку лягушки в кислоту и одновременно раздражая некоторые участки головного мозга (например, накладывая кристаллик поваренной соли на область промежуточного мозга), И. М. Сеченов наблюдал резкую задержку и даже полное отсутствие «кислотного» рефлекса спинного мозга (отдергивание лапки). Отсюда он сделал заключение, что одни нервные центры могут существенно изменять рефлекторную деятельность в других центрах, в частности, вышележащие нервные центры могут тормозить деятельность нижележащих. Описанный опыт вошел в историю физиологии под названием сеченовское торможение.

Реципрокный (антагонистический) характер возбуждающих и тормозных влияний в ЦНС показан учеником И. М. Сеченова Н. Е. Введен-ким и подробно проанализирован английским нейрофизиологом Ч. Шеррингтоном. Важным шагом к выяснению природы центрального торможения оказалось выявление самостоятельного значения торможения для работы нервных центров. Торможение нельзя свести ни к утомлению нервных центров, ни к их перевозбуждению. Торможение самостоятельный нервный процесс, вызываемый возбуждением и проявляющийся в подавлении другого возбуждения.

Тормозные процессы – необходимый компонент в координации нервной деятельности.

Во-первых, процесс торможения ограничивает распространение возбуждения на соседние нервные центры, чем способствует его концентрации в необходимых участках нервной системы.

Во-вторых, возникая в одних нервных центрах параллельно с возбуждением других нервных центров, процесс торможения тем самым выключает деятельность ненужных в данный момент органов.

В-третьих, развитие торможения в нервных центрах предохраняет их от чрезмерного перенапряжения при работе, т.е. играет охранительную роль.

2. Постсинаптическое и пресинаптическое торможение

Процесс торможения, в отличие от возбуждения, не может распространяться по нервному волокну - это всегда местный процесс в области синаптических контактов. По месту возникновения различают пресинаптическое и постсинаптическое торможение. Особенно широкое распространение в ЦНС имеет постсинаптическое торможение.

Постсинаптическое торможение – это тормозные эффекты, возникающие в постсинаптической мембране. Чаше всего этот вид торможения

связан с наличием в ЦНС специальных тормозных нейронов. Они представляют собой особый тип вставочных нейронов, у которых окончания аксонов выделяют тормозной медиатор, в качестве которых могут быть гамма-аминомасляная кислота (ГАМ К), глицин и др.

Нервные импульсы, подходя к тормозным нейронам, вызывают в них такой же процесс возбуждения, как и в других нервных клетках. В ответ по аксону тормозной клетки распространяется обычный потенциал действия. Однако, в отличие от других нейронов, окончания аксона при этом выделяют не возбуждающий, а тормозной медиатор. В результате тор-

мозные клетки тормозят те нейроны, на которых оканчиваются их аксоны.

К специальным тормозным нейронам относятся клетки Рэншоу в спинном мозге, клетки Пуркинье мозжечка, корзинчатые клетки в промежуточном мозге и др. Большое значение, например, тормозные клетки имеют при регуляции деятельности мышц-антагонистов: приводя к расслаблению мышц-антагонистов, они облегчают тем самым одновременное сокращение мышцагонистов (рис. 7).

Рис. 7. Участие тормозной клетки в регуляции мышц- антагонистов: В и Т – возбуждающий и тормозной нейроны; (+) – возбуждение мотонейрона мышцы-сгибателя (МС), (-) – торможение мотонейрона мышцы-разгибателя (МР); Р – кожный рецептор

Клетки Рэншоу участвуют в регуляции уровня активности отдельных мотонейронов спинного мозга. При возбуждении мотонейрона импульсы поступают по его аксону к мышечным волокнам и одновременно по коллатералям аксона – к тормозной клетке Рэншоу. Аксоны последней «возвращаются» к этому же нейрону, вызывая его торможение. Чем больше возбуждающих импульсов посылает мотонейрон на периферию (а значит, и к тормозной клетке), тем сильнее это возвратное торможение (разновидность постсинаптического торможения). Такая замкнутая система действует как механизм саморегуляции нейрона, предохраняя его от чрезмерной активности.

Клетки Пуркинье мозжечка своими тормозными влияниями на клетки подкорковых ядер и стволовых структур участвуют в регуляции тонуса мышц.

Корзинчатые клетки в промежуточном мозге являются как бы воротами, которые пропускают или не пропускают импульсы, идущие в кору больших полушарий от различных областей тела.

Пресинаптическое торможение возникает еще в пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким бы то ни было изменениям.

Пресинаптическое торможение наиболее часто выявляется в структурах мозгового ствола и особенно спинного мозга. Как и постсинаптическое, осуществляется оно посредством специальных тормозных вставочных нейронов. Структурной основой пресинаптического торможения являются аксо-аксонные синапсы, т.е. окончание аксона тормозного нейрона образует синапс на окончании аксона возбуждающей нервной клетки (рис. 8).



Рис. 8. Схема организации синап- ов, участвующих в пресинаптическом торможении: 1 – нервная клетка, 2 – аксон возбуждающего нейрона, 3 – аксон тормозного нейрона

Импульсы в пресинаптической части аксона тормозного нейрона высвобождают медиатор, который вызывает чрезмерно сильную деполяризацию мембраны окончаний аксона возбуждающего нейрона (как предполагают, за счет увеличения проницаемости их мембраны для Cl -).


Считают, что указанная деполяризация вызывает уменьшение амплитуды ПД, приходящего в возбуждающее окончание, что в свою очередь уменьшает количество высвобождаемого им медиатора, вследствие чего амплитуда ВПСП падает. Таким образом блокируется передача возбуждения.

Этот вид торможения ограничивает поток афферентных импульсов к нервным центрам, выключая посторонние для основной деятельности влияния.

3. Явления иррадиации и концентрации. Другие принципы координационной деятельности ЦНС. Принцип доминанты

1. Конвергенция, или принцип общего конечного пути. Схождение различных путей проведения нервных импульсов к одной и той же нервной клетке носит название конвергенции.

2. Дивергенция. Способность нейрона устанавливать многочисленные синаптические связи с различными нервными клетками носит название дивергенции. Благодаря процессу дивергенции одна и та же нервная клетка может участвовать в различных нервных реакциях и контролировать большое число других нейронов, что приводит к иррадиации возбуждения.

3. Явления иррадиации и концентрации. При раздражении одного рецептора возбуждение может в принципе распространяться в ЦНС в любом направлении и на любую нервную клетку. Это происходит благодаря многочисленным взаимосвязям нейронов одной рефлекторной дуги с нейронами других рефлекторных дуг. Распространение процесса возбуждения на другие нервные центры называют явлением иррадиации.

Чем сильнее афферентное раздражение и чем выше возбудимость окружающих нейронов, тем больше нейронов охватывает процесс иррадиации. Процессы торможения ограничивают иррадиацию и способствуют концентрации возбуждения в исходном пункте ЦНС.

Процесс иррадиации играет важную положительную роль при формировании новых реакций организма (ориентировочных реакций, условных рефлексов). Чем больше активируется различных нервных центров, тем легче отобрать из их числа наиболее нужные для последующей деятельности центры. Благодаря иррадиации возбуждения между различными

нервными центрами возникают новые функциональные взаимосвязи - ус­ловные рефлексы. На этой основе возможно, например, формирование но­вых двигательных навыков.

Вместе с тем, иррадиация возбуждения может оказать отрицательное воздействие на состояние и поведение организма, нарушая тонкие взаимо­отношения между возбужденными и заторможенными нервными центрами и вызывая нарушения координации движений.

4. Принцип доминанты.

Исследуя особенности межцентральных отношений, А. А. Ухтом­ский обнаружил, что если в организме животного осуществляется сложная рефлекторная реакция, например, повторяющиеся акты глотания, то элек­трическое раздражение моторных центров не только перестает вызывать в этот момент движение конечностей, но и усиливает протекание начавшей­ся цепной реакции глотания, которая оказалась главенствующей.

Такой господствующий очаг возбуждения в ЦНС, определяющий текущую деятельность организма, А. А. Ухтомский (1923) обозначил термином доминанта.

Речь идет о том, что среди рефлекторных актов, которые могут быть выполнены в данный момент времени, имеются рефлексы, реализация ко­торых представляет наибольший интерес для организма, т.е. они в данный момент времени самые важные. Поэтому эти рефлексы реализуются, а другие - менее важные - тормозятся.

Центры, участвующие в реализации доминантных рефлексов, Ух­томский назвал доминантным очагом возбуждения. Этот «очаг» облада­ет рядом важных свойств:

■ он стойкий (его сложно затормозить);

■ этот очаг тормозит другие потенциальные доминантные очаги; Отчего же именно данный очаг является доминантным? Доминирующий очаг может возникнуть при повышенном уровне

возбудимости нервных клеток, который создается различными гумораль­ными и нервными влияниями. Т.е. это определяется состоянием организма, например, гормональным фоном. У голодного животного и человека до­минантными рефлексами являются пищевые.

Доминирующий очаг подавляет деятельность других центров, ока­зывая сопряженное торможение.

Объединение большого числа нейронов в одну доминантную си­стему происходит путем взаимного сонастраивания на общий темп актив­ности, т.е. путем усвоения ритма. Одни нервные клетки снижают свой бо лее высокий темп деятельности, а другие - повышают низкий темп до не­которого среднего, оптимального ритма. Доминанта может надолго сохра­няться в скрытом, следовом состоянии (потенциальная доминанта). При возобновлении прежнего состояния или прежней внешней ситуации доми­нанта может снова возникнуть (актуализация доминанты). Например, в предстартовом состоянии активизируются все те нервные центры, которые входили в рабочую систему во время предыдущих тренировок, и, соответ­ственно, усиливаются функции, связанные с работой. Мысленное выпол­нение физических упражнений или представление движений также вос­производит рабочую доминанту, что обеспечивает тренирующий эффект представления движений и является основой так называемой идеомотор-ной тренировки. При полном расслаблении (например, при аутогенной тре­нировке) спортсмены добиваются устранения рабочих доминант, что ускоряет процессы восстановления.

Как фактор поведения доминанта связана с высшей нервной дея­тельностью и психологией человека. Доминанта является физиологиче­ской основой акта внимания. При наличии доминанты многие влияния внешней среды остаются вне нашего внимания, но зато более интенсивно улавливаются и анализируются те, которые нас особенно интересуют. Та­ким образом, доминанта является мощным фактором отбора биологи­чески и социально наиболее значимых раздражений.

4. Принцип обратной связи.

Осуществляется эта связь за счет потока импульсов с рецепторов.

5. Принцип субординации, или соподчинения.
Нижележащий отдел ЦНС подчиняется указаниям вышележащего отдела.


Материалы для самостоятельной подготовки

Вопросы к коллоквиуму и для самоконтроля

1. На какие отделы подразделяют нервную систему?

2. К ЦНС относят. . . .

3. Назовите основные функции ЦНС.

4. Как Вы понимаете выражение «нейрон-структурная и функциональная еди­ница нервной системы»?

5. Каковы основные функции нейронов?

6. В чем заключается:

■ рецепторная;

■ интегративная;

■ эффекторная функция нейронов?

7. Назовите функции глиальных клеток.

8. Охарактеризуйте основные структурные элементы нервной клетки и их функции.

9. Дайте классификацию нейронов по количеству отростков.

10. Какие типы нейронов Вы знаете?

11. Как происходит взаимодействие нейронов между собой и с эффекторными органами?

12. Что такое синапс? Как он устроен?

13. Как называются химические вещества, с помощью которых происходит пе-редача нервных импульсов?

14. Приведите примеры: возбуждающих; тормозных медиаторов.

15. Опишите механизм действия медиатора в возбуждающих; тормозных синапсах.

16. Назовите особенности проведения возбуждения в ЦНС.

17. Что такое рефлекс?

18. Из каких частей состоит рефлекторная дуга? Что такое нервные центры?

19. На чем основаны процессы координации деятельности ЦНС?

20. Кем и когда было открыто явление торможения в ЦНС?

21. В чем состоит значение процесса торможения в ЦНС?

22. Чем отличается процесс торможения от процесса возбуждения?

23. Какие виды торможения Вы знаете?

24. Назовите специальные тормозные нейроны.

25. Укажите особенности постсинаптического и пресинаптического тормо-жения.

26. Перечислите принципы координационной деятельности ЦНС.

27. Кем и когда был открыт принцип доминанты?

28. Какими свойствами обладает доминантный очаг возбуждения?

29. Дайте определение доминанты.

30. Распространение процесса возбуждения на другие нервные центры называ-ют явлением. . . .

31. Схождение различных путей проведения нервных импульсов к одной и той же нервной клетке носит название. . . .

32. Способность нейрона устанавливать многочисленные синаптические связи с различными нервными клетками называется. . . . .

1. Функцией нервной системы является:

а. регуляция работы органов и систем органов;

б. осуществление связи организма с внешней средой;

в. согласование деятельности разных органов и систем органов;

г. а + б + в.

2. Укажите неверный ответ.
Периферическая нервная система представлена:

а. нервными узлами;

б. нервными сплетениями;

в. нервными волокнами (аксонами) и их окончаниями;

г. нервными центрами.


3. Нейрон состоит:

а. из тела;

б. из дендритов;

в. из длинного отростка – аксона;

г. из аксонных окончаний;

д. а + б + в + г.

4. Функция восприятия нервного импульса осуществляется:

б. аксоном;

в. дендритами.

5. Передача нервного импульса с нейрона осуществляется:

а. в синапсе;

б. в теле;

в. в дендрите.

6. Серое вещество мозга образовано скоплением:

а. отростков нейронов;

б. тел нейронов;

в. концевых частей аксонов.

7. Центростремительными называются нейроны, которые проводят нервный
импульс:

а. от рецептора в ЦНС;

б. из ЦНС к рабочему органу;

в. от одной нервной клетки к другой.

8. Отметьте неверный ответ.
Вставочными называются нейроны, которые:

а. полностью расположены в ЦНС;

б. передают нервный импульс с одного нейрона на другой;

в. передают нервный импульс на рабочий орган.

9. Центробежными называются нейроны, проводящие нервный импульс:

а. из ЦНС к рабочему органу;

б. от рецептора в ЦНС;

в. от одного нейрона на другой в пределах ЦНС.

10. Наибольшая скорость проведения нервного импульса характерна для воло-
кон:

а. соматической нервной системы;

б. вегетативной нервной системы;

в. одинакова для а и б.


Модуль 2 ЧАСТНАЯ ФИЗИОЛОГИЯ ЦНС

Лекция 7

ФУНКЦИИ СПИННОГО МОЗГА

1. Спинной мозг. Нейронная организация. Функции спинного мозга

В ЦНС различают более древние сегментарные отделы (спинной, продолговатый и средний мозг, регулирующие функции отдельных частей тела, лежащих на том же уровне) и эволюционно более молодые надсегментарные (промежуточный мозг, мозжечок и кора больших полушарий) отделы нервной системы


Гипоталамус


Полосатое тело


Рис. 9. Основные отделы центральной нервной системы (схема)

Надсегментарные отделы не имеют непосредственных связей с органами тела, а управляют их деятельностью через нижележащие сегментарные отделы.

Спинной мозг является низшим и наиболее древним отделом ЦНС.

Спинной мозг характеризуется выраженным сегментарным строением, отражающим сегментарное строение тела позвоночных. От каждого спинномозгового сегмента отходят две пары передних (вентральных) и задних (дорсальных) корешков (рис. 10).

Рис. 10. Передние (1) и задние (2) корешки спинного мозга (схема),

3 – спинномозговой узел

Дорсальные корешки формируют афферентные входы, вентральные – эфферентные выходы спинного мозга. В них проходят аксоны альфа- и гаммамотонейронов, а также преганглионарных нейронов вегетативной нервной системы (ВНС). После перерезки передних корешков на одной стороне наблюдается полное выключение двигательных реакций, но чувствительность этой стороны тела сохраняется; перерезка задних корешков выключает чувствительность, но не приводит к утрате двигательных реакций мускулатуры. При травме спинного мозга, когда нарушается связь между спинным и головным мозгом, наступает спинальный шок.

На поперечном срезе спинного мозга ясно выделяется центрально расположенное серое вещество, образованное скоплением тел нервных клеток, и окаймляющее его белое вещество, образованное нервными волокнами. В сером веществе различают передние и задние рога, между которыми лежит промежуточная зона. Кроме того, в грудных сегментах различают боковые рога. В составе серого вещества спинного мозга человека насчитывают около 13,5 млн нервных клеток.


Нейронная организация спинного мозга. Все нейронные элементы спинного мозга могут быть подразделены на 4 основные группы:

■ эфферентные нейроны;

■ вставочные нейроны, составляющие основную массу (97 %) всех нейронов и обеспечивающие сложные процессы координации внутри спинного мозга;

■ нейроны восходящих трактов;

■ интраспинальные волокна чувствительных афферентных нейронов.

Эфферентные нейроны. Среди мотонейронов спинного мозга вы­деляют крупные клетки с длинными дендритами - альфа-мотонейроны и мелкие - гамма-мотонейроны. От альфа-мотонейронов отходят наиболее толстые и быстропроводящие волокна двигательных нервов, вызывающие сокращения скелетных мышечных волокон. Тонкие волокна гамма-мото­нейронов не вызывают сокращения мышц. Они подходят к проприорецепторам - мышечным веретенам и регулируют их чувствительность.

Благодаря сочетанной активации альфа- и гамма-мотонейронов ре­цепторы растяжения могут активироваться не только во время растяжения мышц, но и при их сокращении, что важно для обеспечения моторной ко­ординации.

Особую группу эфферентных нейронов представляют преганглионарные нейроны ВНС , расположенные как в боковых, так и в передних рогах спинного мозга.

Вставочные нейроны спинного мозга представляют довольно раз­нородную группу нервных клеток, тела, дендриты и аксоны которых нахо­дятся в пределах спинного мозга.

Нейроны восходящих трактов также целиком находятся в преде­лах ЦНС. Тела этих клеток расположены в сером веществе спинного мозга, в то время как их аксоны проецируются к нейронам различных вышеле­жащих образований.

Основными функциями спинного мозга являются рефлекторная и проводниковая.

Рефлекторная функция спинного мозга. В спинном мозге замыка­ется большое количество рефлекторных дуг, с помощью которых регули­руются различные функции организма.

Рефлексы спинного мозга можно подразделить на двигательные , осуществляемые альфа-мотонейронами передних рогов, и вегетативные, осуществляемые эфферентными клетками боковых рогов.

Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышц лица). Спинной мозг осуществляет эле­ментарные двигательные рефлексы - сгибательные и разгибательные, ритмические, шагательные, возникающие при раздражении кожи или про приорецепторов мышц и сухожилий, а также посылает постоянную импульсацию к мышцам, поддерживая мышечный тонус.

К числу наиболее простых относятся сухожильные рефлексы. Они легко вызываются с помощью короткого удара по сухожилию и имеют важное диагностическое значение в неврологической практике, т.к. позволяют оценивать функциональное состояние альфа-мотонейронов по изменению ответных потенциалов мышц при периферических раздражениях. Особенно выражены сухожильные рефлексы в мышцах разгибателей ноги (коленный рефлекс, Н-рефлекс или рефлекс Гофмана) – ответная реакция икроножной мышцы при раздражении большеберцового нерва; и голени (ахиллов рефлекс, Т-рефлекс (тендон – сухожилие) – ответная реакция камбаловидной мышцы при раздражении ахиллова сухожилия. Рефлекторная реакция проявляется в виде резкого сокращения мышцы.

Специальные мотонейроны иннервируют дыхательную мускулатуру (межреберные мышцы и диафрагму) и обеспечивают дыхательные движения. Вегетативные нейроны иннервируют все внутренние органы (сердце, сосуды, потовые железы, железы внутренней секреции, пищеварительный тракт, мочеполовую систему). Так, центры дефекации и мочеиспускания лежат в нижнем отделе спинного мозга.

Проводниковая функция спинного мозга связана с передачей в вышележащие отделы нервной системы получаемого с периферии потока информации и с проведением импульсов, идущих из головного мозга на периферию. Таким образом, основная функция спинного мозга у человека проведение возбуждения от органов к головному мозгу и от него к органам.

2. Функции заднего мозга

Головной мозг устроен значительно сложнее, чем спинной.

Продолговатый мозг и варолиев мост (в целом – задний мозг) являются частью ствола мозга. В заднем мозге сосредоточено управление жизненно важными процессами. Здесь находятся:

1. большая группа черепномозговых нервов (от V до XII пары), иннервирующих кожу, слизистые оболочки, мускулатуру головы и ряд внутренних органов (сердце, легкие, печень);

2. центры многих пищеварительных рефлексов – жевания, глотания, движений желудка и части кишечника, выделения пищеварительных соков;

3. центры некоторых защитных рефлексов (чихания, кашля, мигания, слезоотделения, рвоты);

4. центры водно- солевого и сахарного обмена;

5. на дне IV желудочка в продолговатом мозге находится жизненно важный дыхательный центр, состоящий из центров вдоха и выдоха. Его составляют мелкие клетки, посылающие импульсы к дыхательным мышцам через мотонейроны спинного мозга. Удар в продолговатый мозг вызывает сильное нервное возбуждение и паралич животного;

6. в непосредственной близости от дыхательного центра расположен сердечно- сосудистый центр. Его крупные клетки регулируют деятельность сердца и просвет сосудов. Переплетение клеток дыхательного и сердечно-сосудистого центров обеспечивает их тесное взаимодействие;

7. продолговатый мозг играет важную роль в осуществлении двигательных актов и в регуляции тонуса скелетных мышц, повышая тонус мышц-разгибателей. Он принимает участие, в частности, в осуществлении установочных рефлексов позы (шейных, лабиринтных).

Это все центры безусловных рефлексов.

Через продолговатый мозг проходят восходящие пути слуховой, вестибулярной, проприоцептивной и тактильной чувствительности. На уровне продолговатого мозга перекрещиваются нервные пути.

Функции центров продолговатого мозга находятся под контролем высших отделов головного мозга.

3. Функции среднего мозга

В состав среднего мозга входят скопления нервных клеток, получивших названия четверохолмия, черная субстанция и красные ядра. В передних буграх четверохолмия находятся зрительные подкорковые центры, а в задних – слуховые.

Средний мозг участвует в регуляции движений глаз, осуществляет зрачковый рефлекс (расширение зрачков в темноте и сужение их на свету).

Четверохолмие выполняет ряд реакций, являющихся компонентами ориентировочного рефлекса. Если Вы вдруг ослеплены неожиданно ярким светом, Вы плотно закрываете глаза. В ответ на внезапное раздражение происходит поворот головы и глаз в сторону раздражителя, а у животных – настораживание ушей. Этот рефлекс (по И. П. Павлову, рефлекс « Что такое) необходим для подготовки организма к своевременной реакции на любое новое воздействие.

Черная субстанция среднего мозга имеет отношение к рефлексам жевания и глотания, участвует в регуляции тонуса мышц (особенно при выполнении мелких движений пальцами рук) и в организации содружественных двигательных реакций.

Красное ядро среднего мозга выполняет моторные функции – регулирует тонус скелетных мышц, вызывая усиление тонуса мышц-сгибателей. Оказывая значительное влияние на тонус скелетных мышц, средний мозг принимает участие в ряде установочных рефлексов поддержания позы (выпрямительных – установке тела теменем вверх и др.), прямолинейного движения, вращения тела, приземления, подъема и спуска. Все они возникают при участии органов равновесия и обеспечивают сложную координацию движений в пространстве.

Лекция 8

ФУНКЦИИ СПИННОГО МОЗГА

И ПОДКОРКОВЫХ ОТДЕЛОВ ГОЛОВНОГО МОЗГА (окончание)

Проявление и осуществление рефлекса возможно только при ограничении распространения возбуждения с одних нервных центров на другие. Это достигается взаимодействием возбуждения с другим нервным процессом, противоположным по эффекту процессом торможения.

Почти до середины XIX века физиологи изучали и знали только один нервный процесс - возбуждение.

Явления торможения в нервных центрах, т.е. в центральной нервной системе были впервые открыты в 1862 году И.М.Сеченовым ("сеченовское торможение”). Это открытие сыграло в физиологии не меньшую роль, чем сама формулировка понятия рефлекса, так как торможение обязательно участвует во всех без исключения нервных актах. И.М.Сеченов обнаружил явление центрального торможения при раздражении промежуточного мозга теплокровных. В 1880 году немецкий физиолог Ф.Гольц установил торможение спинальных рефлексов. Н.Е. Введенский в результате серий опытов по парабиозу вскрыл интимную связь процессов возбуждения и торможения и доказал, что природа этих процессов едина.

Торможение - местный нервный процесс, приводящий к угнетению или предупреждению возбуждения. Торможение является активным нервным процессом, результатом которого служит ограничение или задержка возбуждения. Одна из характерных черт тормозного процесса- отсутствие способности к активному распространению по нервным структурам.

В настоящее время в центральной нервной системе выделяют два вида торможения: торможение центральное (первичное), являющееся результатом возбуждения (активации) специальных тормозных нейронов и торможение вторичное, которое осуществляется без участия специальных тормозных структур в тех самых нейронах в которых происходит возбуждение.

Центральное торможение(первичное) - нервный процесс, возникающий в ЦНС и приводящий к ослаблению или предотвращению возбуждения. Согласно современным представлениям центральное торможение связано с действием тормозных нейронов или синапсов, продуцирующих тормозные медиаторы (глицин, гаммааминомасляную к тип электрических изменений, названных тормозными постсинаптическими кислоту), которые вызывают на постсинаптической мембране особый потенциалами (ТПСП) или деполяризацию пресинаптического нервного окончания, с которым контактирует другое нервное окончание аксона. Поэтому выделяют центральное (первичное) постсинаптическое торможение и центральное (первичное) пресинаптическое торможение.

Постсинаптическое торможение (лат. post позади, после чего-либо + греч. sinapsis соприкосновение, соединение) - нервный процесс, обусловленный действием на постсинаптическую мембрану специфических тормозных медиаторов (глицин, гаммааминомаслянная кислота), выделяемых специализированными пресинаптическими нервными окончаниями. Медиатор, выделяемый ими, изменяет свойства постсинаптической мембраны, что вызывает подавление способности клетки генерировать возбуждение. При этом происходит кратковременное повышение проницаемости постсинаптической мембраны к ионам К+ или CI-, вызывающее снижение ее входного электрического сопротивления и генерацию тормозного постсинаптического потенциала (ТПСП). Возникновение ТПСП в ответ на афферентное раздражение обязательно связано с включением в тормозной процесс дополнительного звена - тормозного интернейрона, аксональные окончания которого выделяют тормозной медиатор. Специфика тормозных постсинаптических эффектов впервые была изучена на мотонейронах млекопитающих. В дальнейшем первичные ТПСП были зарегистрированы в промежуточных нейронах спинного и продолговатого мозга, в нейронах ретикулярной формации, коры больших полушарий, мозжечка и таламических ядер теплокровных животных.

Известно, что при возбуждении центра сгибателей одной из конечностей центр ее разгибателей тормозится и наоборот. Д. Экклс выяснил механизм этого явления в следующем опыте. Он раздражал афферентный нерв, вызывающий возбуждение мотонейрона, иннервирующего мышцу - разгибатель.

Нервные импульсы, дойдя до афферентного нейрона в спинномозговом ганглии, направляются по его аксону в спинном мозге по двум путям: к мотонейрону, иннервирующему мышцу - разгибатель, возбуждая ее и по коллатерам к промежуточному тормозному нейрону, аксон которого контактирует с мотонейроном иннервирующим мышцу - сгибатель, вызывая таким образом торможение антагонистической мышцы. Этот вид торможения был обнаружении в промежуточных нейронах всех уровней центральной нервной системы при взаимодействии антагонистических центров. Он был назван поступательным постсинаптическим торможением. Этот вид торможения координирует, распределяет процессы возбуждения и торможения между нервными центрами.

Возвратное (антидромное) постсинаптическое торможение (греч. antidromeo бежать в противоположном направлении) - процесс регуляции нервными клетками интенсивности поступающих к ним сигналов по принципу отрицательной обратной связи. Он заключается в том, что коллатерали аксонов нервной клетки устанавливают синаптические контакты со специальными вставочными нейронами (клетки Реншоу), роль которых заключается в воздействии на нейроны, конвергирующие на клетке, посылающей эти аксонные коллатерали. По такому принципу осуществляется торможение мотонейронов.

Возникновение импульса в мотонейроне млекопитающих не только активирует мышечные волокна, но через коллатерали аксона активирует тормозные клетки Реншоу. Последние устанавливают синаптические связи с мотонейронами. Поэтому усиление импульсации мотонейрона ведет к большей активации клеток Реншоу, вызывающей усиление торможения мотонейронов и уменьшение частоты их импульсации. Термин "антидромное” употребляется потому, что тормозной эффект легко вызывается антидромными импульсами, рефлекторно возникающими в мотонейронах.

Чем сильнее возбужден мотонейрон, чем больше сильные импульсы идут к скелетным мышцам по его аксону, тем интенсивнее возбуждается клетка Реншоу, которая подавляет активность мотонейрона. Следовательно, в нервной системе существует механизм, оберегающий нейроны от чрезмерного возбуждения. Характерная особенность постсинаптического торможения заключается в том, что оно подавляется стрихнином и столбнячным токсином (на процессы возбуждения эти фармакологические вещества не действуют).

В результате подавления постсинаптического торможения нарушается регуляция возбуждения в цнс, возбуждение разливается ("диффундирует”) по всей центральной нервной системы, вызывая перевозбуждение мотонейронов и судорожные сокращения групп мышц (судороги).

Торможение ретикулярное (лат. reticularis - сетчатый) - нервный процесс развивающийся в спинальных нейронах под влиянием нисходящей импульсации из ретикулярной формации (гигантское ретикулярное ядро продолговатого мозга). Эффекты, создаваемые ретикулярными влияниями, по функциональному действию сходны с возвратным торможением, развивающимся на мотонейронах. Влияние ретикулярной формации вызывают стойкие ТПСП, охватывающие все мотонейроны независимо от их функциональной принадлежности. В этом случае, так же как и при возвратном торможении мотонейронов происходит ограничение их активности. Между таким нисходящим контролем со стороны ретикулярной формации и системой возвратного торможения через клетки Реншоу существует определенное взаимодействие, и клетки Реншоу находятся под постоянным тормозящем контролем со стороны двух структур. Тормозящее влияние со стороны ретикулярной формации являются дополнительным фактором в регуляции уровня активности мотонейронов.

Первичное торможение может вызываться механизмами иной природы, не связанными с изменениями свойств постсинаптической мембраны. Торможение в этом случае возникает на пресинаптической мембране (синаптическое и пресинаптическое торможение).

Синаптическое торможение (греч. sunapsis соприкосновение, соединение) - нервный процесс, основанный на взаимодействии медиатора, секретируемого и выделяемого пресинаптическими нервными окончаниями, со специфическими молекулами постсинаптической мембраны. Возбуждающий или тормозной характер действия медиатора зависит от природы каналов, которые открываются в постсинаптической мембране. Прямое доказательство наличия в Цнс специфических тормозящих синапсов было впервые получено Д. Ллойдом (1941).

Данные относительно электрофизиологических проявлений синаптического торможения: наличие синаптической задержки, отсутствие электрического поля в области синаптических окончаний дали основание считать его следствием химического действия особого тормозящего медиатора, выделяемого синаптическими окончаниями. Д. Ллойд показал, что если клетка находится в состоянии деполяризации, то тормозной медиатор вызывает гиперполяризацию, в то время как на фоне гиперполяризации постсинаптической мембраны он вызывает ее деполяризацию.

Пресинаптическое торможение (лат. praе -впереди чего-либо + греч. sunapsis соприкосновение, соединение) - частный случай синаптических тормозных процессов, проявляющихся в подавлении активности нейрона в результате уменьшения эффективности действия возбуждающих синапсов еще на пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким-либо изменениям. Пресинаптическое торможение осуществляется посредством специальных тормозных интернейронов. Его структурной основой являются аксо-аксональные синапсы, образованные терминалиями аксонов тормозных интернейронов и аксональными окончаниями возбуждающих нейронов.

При этом окончание аксона тормозного нейрона является пресимпатическим по отношению к терминали возбуждающего нейрона, которая оказывается постсинаптической по отношению к тормозному окончанию и пресинаптической по отношению к активируемой им нервной клетки. В окончаниях пресинаптического тормозного аксона освобождается медиатор, который вызывает деполяризацию возбуждающих окончаний за счет увеличения проницаемости их мембраны для CI-. Деполяризация вызывает уменьшение амплитуды потенциала действия, приходящего в возбуждающее окончание аксона. В результате происходит угнетение процесса высвобождения медиатора возбуждающими нервными окончаниями и снижение амплитуды возбуждающего постсинаптического потенциала.

Характерной особенностью пресинаптической деполяризации является замедленное развитие и большая длительность (несколько сотен миллисекунд), даже после одиночного афферентного импульса.

Пресинаптическое торможение существенно отличается от постсинаптического и в фармакологическом отношении. Стрихнин и столбнячный токсин не влияют на его течение. Однако наркотизирующие вещества (хлоралоза, нембутал) значительно усиливают и удлиняют пресинаптическое торможение. Этот вид торможения обнаружен в различных отделах цнс. Наиболее часто оно выявляется в структурах мозгового ствола и спинного мозга. В первых исследованиях механизмов пресинаптического торможения считалось, что тормозное действие осуществляется в точке, отдаленной от сомы нейрона, поэтому его называли "отдаленным” торможением.

Функциональное значение пресинаптического торможения, охватывающего пресинаптические терминали, по которым поступают афферентные импульсы, заключается в ограничении поступления к нервным центрам афферентной импульсации. Пресинаптическое торможение в первую очередь блокирует слабые асинхронные афферентные сигналы и пропускает более сильные, следовательно, оно служит механизмом выделения, вычленения более интенсивных афферентных импульсов из общего потока. Это имеет огромное приспособительное значение для организма, так как из всех афферентных сигналов, идущих к нервным центрам, выделяются самые главные, самые необходимые для данного конкретного времени. Благодаря этому нервные центры, нервная система в целом освобождается от переработки менее существенной информации.

Вторичное торможение - торможение осуществляющееся теми же нервными структурами, в которых происходит возбуждение. Этот нервный процесс подробно изложен в работах Н.Е. Введенского (1886, 1901г.г.).

Торможение реципрокное (лат. reciprocus - взаимный) - нервный процесс, основанный на том, что одни и те же афферентные пути, через которые осуществляется возбуждение одной группы нервных клеток, обеспечивают через посредство вставочных нейронов торможение других групп клеток. Реципрокные отношения возбуждения и торможения в Цнс были открыты и продемонстрированы Н.Е. Введенским: раздражение кожи на задней лапке у лягушки вызывает ее сгибание и торможение сгибания или разгибания на противоположной стороне. Взаимодействие возбуждения и торможения является общим свойством всей нервной системы и обнаруживается как в головном, так и в спинном мозге. Экспериментально доказано, что нормальное выполнение каждого естественного двигательного акта основано на взаимодействии возбуждения и торможения на одних и тех же нейронах цнс.

Общее центральное торможение - нервный процесс, развивающийся при любой рефлекторной деятельности и захватывавающий почти всю цнс, включая центры головного мозга. Общее центральное торможение обычно проявляется раньше возникновения какой-либо двигательной реакции. Оно может проявляться при такой малой силе раздражения при которой двигательный эффект отсутствует. Такого вида торможение было впервые описано И.С. Беритовым (1937). Оно обеспечивает концентрацию возбуждения других рефлекторных или поведенческих актов, которые могли бы возникнуть под влиянием раздражений. Важная роль в создании общего центрального торможения принадлежит желатинозной субстанции спинного мозга.

При электрическом раздражении желатинозной субстанции у спинального препарата кошки происходит общее торможение рефлекторных реакций, вызываемых раздражением сенсорных нервов. Общее торможение является важным фактором в создании целостной поведенческой деятельности животных, а также в обеспечении избирательного возбуждения определенных рабочих органов.

Парабиотическое торможение развивается при патологических состояниях, когда лабильность структур центральной нервной системы снижается или происходит очень массивное одновременное возбуждение большого числа афферентных путей, как, например, при травматическом шоке.

Некоторые исследователи выделяют еще один вид торможения - торможение вслед за возбуждением. Оно развивается в нейронах после окончания возбуждения в результате сильной следовой гиперполяризации мембраны (постсинаптической).

Структура и функции симпатического и парасимпатического отделов вегетативной нервной системы. Место и роль вегетативной нервной системы в регуляции функций. Схемы, примеры. Взаимодействие вегетативной и эндокринной систем

Вегетативная нервная система - это часть нервной системы, которая регулирует уровень функциональной активности внутренних органов, кровеносных и лимфатических сосудов, секреторную активность желез внешней и внутренней секреции организма.

Вегетативная (автономная) нервная система выполняет адаптационно-трофические функции, активно участвуя в поддержании гомеостазиса (т.е. постоянства среды) в организме. Она приспосабливает функции внутренних органов и всего организма человека к конкретным изменениям окружающей среды,​ влияя и на физическую, и на психическую активность человека.

Её нервные волокна (обычно не все полностью покрытые миелином) иннервируют гладкую мускулатуру стенок внутренних органов, кровеносных сосудов и кожи, железы и сердечную мышцу. Оканчиваясь в скелетных мышцах и в коже, они регулируют уровень обмена веществ в них, обеспечивая их питание (трофику). Влияние ВНС распространяется также и на степень чувствительности рецепторов. Таким образом, вегетативная нервная система охватывает более обширные области иннервации, чем соматическая, т. к. соматическая нервная система иннервирует только кожу и скелетные мышцы, а ВНС - регулирует и все внутренние органы, и все ткани, осуществляя адаптационно-трофические функции в отношении всего организма, в том числе и кожи, и мышц.

По своему строению вегетативная нервная система отличается от соматической. Волокна соматической нервной системы всегда выходят из ЦНС (спинного и головного мозга) и идут, не прерываясь, до иннервируемого органа. И они полностью покрыты миелиновой оболочной. Соматический нерв образован, таким образом, только отростками нейронов, тела которых лежат в ЦНС. Что касается нервов ВНС, то они всегда образованы двумя нейронами. Один - центральный, лежит в спинном или головном мозге, второй (эффекторный) - в вегетативном ганглии, и нерв состоит из двух отделов - преганглионарного, как правило, покрытого миелиновой оболочкой и оттого белого цвета, и постганглионарного - не покрытого миелиновой оболочкой и оттого серого цвета. Их вегетативные ганглии, (всегда вынесенные на периферию из ЦНС), располагаются в трёх местах. Первые (паравертебральные ганглии)- в симпатической нервной цепочке, расположенной по бокам позвоночника; вторая группа - более отдалённо от спинного мозга - превертебральные , и, наконец, третья группа - в стенках иннервируемых органов (интрамурально ).

Некоторые авторы выделяют также экстрамуральные ганглии, лежащие не в стенке, а поблизости от иннервируемого органа. Чем дальше расположены ганглии от ЦНС, тем большая часть вегетативного нерва покрыта миелиновой оболочкой. И, следовательно, скорость передачи нервного импульса в этой части вегетативного нерва выше.

Следующее отличие состоит в том, что работа соматической нервной системы, как правило, может контролироваться сознанием, а ВНС - нет. Работой скелетных мышц мы, в основном, можем управлять, а сокращением гладкой мускулатуры (например, кишечника) никак не можем. В отличие от соматической в ней нет такой выреженной сегментарности в иннервации. Нервные волокна ВНС выходят из центральной нервной системы из трёх её отделов - головного мозга, грудопоясничных и крестцовых отделов спинного мозга.

Рефлекторные дуги ВНС по своей структуре отличаются от рефлекторных дуг соматических рефлексов. Дуга рефлекса соматической нервной системы всегда проходит через ЦНС. Что касается ВНС, то у неё рефлексы могут осуществляться как через длинные дуги (через ЦНС), так и через короткие - через вегетативные ганглии. Короткие рефлекторные дуги, проходящие через вегетативные ганглии, имеют большое значение, т.к. обеспечивают срочные адаптационные реакции иннервируемых органов, не требующих участия ЦНС.

Координированная работа антагонистических нервных центров обеспечивается формированием реципрокных отношений между нервными центрами благодаря наличию специальных тормозных нейронов – клеток Реншоу.

Известно, что сгибание и разгибание конечностей осуществляется благодаря согласованной работе двух функционально антагонистических мышц: сгибателей и разгибателей. Сигнал от афферентного звена через промежуточный нейрон вызывает возбуждение мотонейрона, иннервирующего мышцу-сгибатель, а через клетку Реншоу тормозит мотонейрон, иннервирующий мышцу-разгибатель (и наоборот).

Латеральное торможение

При латеральном торможении возбуждение, передаваемое через коллатерали аксона возбужденной нервной клетки, активирует вставочные тормозные нейроны, которые тормозят активность соседних нейронов, в которых возбуждение отсутствует или является более слабым.

В результате в этих соседних клетках развивается очень глубокое торможение. Образующаяся зона торможения находится сбоку по отношению к возбужденному нейрону.

Латеральное торможение по нейронному механизму действия может иметь форму как постсинаптического, так и пресинаптического торможения. Играет важную роль при выделении признака в сенсорных системах, коре больших полушарий.

Значение торможения

    Координация рефлекторных актов . Направляет возбуждение к определенным нервным центрам или по определенному пути, выключая те нейроны и пути, деятельность которых в данный момент является несущественной. Результатом такой координации является определенная приспособительная реакция.

    Ограничение иррадиации .

    Охранительное. Предохраняет нервные клетки от перевозбуждения и истощения. Особенно при действии сверхсильных и длительно действующих раздражителей.

В реализации информационно-управляющей функции ЦНС значительная роль принадлежит процессам координации деятельности отдельных нервных клеток и нервных центров.

Координация – морфофункциональное взаимодействие нервных центров, направленное на осуществление определенного рефлекса или регуляции функции.

Морфологическая основа координации: связь между нервными центрами (конвергенция, дивергенция, циркуляция).

Функциональная основа: возбуждение и торможение.

Основные принципы координационного взаимодействия

    Сопряженное (реципрокное) торможение .

    Обратная связь .Положительная – сигналы, поступающие на вход системы по цепи обратной связи, действуют в том же направлении, что и основные сигналы, что ведет к усилению рассогласования в системе.Отрицательная – сигналы, поступающие на вход системы по цепи обратной связи, действуют в противоположном направлении и направлены на ликвидацию рассогласования, т.е. отклонений параметров от заданной программы (П.К. Анохин).

    Общий конечный путь (принцип «воронки»Шеррингтона ). Конвергенция нервных сигналов на уровне эфферентного звена рефлекторной дуги определяет физиологический механизм принципа «общего конечного пути».

    Облегчение .Это интегративное взаимодействие нервных центров, при котором суммарная реакция при одновременном раздражении рецептивных полей двух рефлексов выше суммы реакций при изолированном раздражении этих рецептивных полей.

    Окклюзия . Это интегративное взаимодействие нервных центров, при котором суммарная реакция при одновременном раздражении рецептивных полей двух рефлексов меньше, чем сумма реакций при изолированном раздражении каждого из рецептивных полей.

    Доминанта .Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в ЦНС. ПоА.А. Ухтомскому , доминантный очаг характеризуется:

Повышенной возбудимостью,

Стойкостью и инертностью возбуждения,

Повышенной суммацией возбуждения.

Доминирующее значение такого очага определяет его угнетающее влияние на другие соседние очаги возбуждения. Принцип доминанты определяет формирование главенствующего возбужденного нервного центра в тесном соответствии с ведущими мотивами, потребностями организма в конкретный момент времени.

7. Субординация. Восходящие влияния преимущественно носят возбуждающий стимулирующий характер, нисходящие носят угнетающий тормозной характер. Эта схема согласуется с представлениями о росте в процессе эволюции роли и значении тормозных процессов в осуществлении сложных интегративных рефлекторных реакций. Имеет регулирующий характер.

МЕХАНИЗМЫ ЦЕНТРАЛЬНОГО ТОРМОЖЕНИЯ.

ПРИНЦИПЫ КООРДИНАЦИОННОЙ ДЕЯТЕЛЬНОСТИ ЦНС

Продолжительность изучения темы_______________ часов

Из них на занятие ___________ часов; самостоятельная работа_________ часов.

Место проведения учебная комната

Цель: Знать виды и механизмы центрального торможения; Уметь оценить роль центрального торможения в координации рефлекторной деятельности организма.

Задачи:

    Знать историю открытия центрального торможения (Шеррингтон, Сеченов, Гольц) и современные исследования, позволившие раскрыть его природу (Экклс, Реншоу);

    Уметь перечислить основные виды центрального торможения, связанного и не связанного с функцией особых тормозных нейронов;

    Уметь охарактеризовать сущность, механизм и основные разновидности постсинаптического торможения;

    Знать медиаторные и ионные механизмы тормозных потенциалов (ТПСП), лежащие в основе постсинаптического торможения;

    Уметь охарактеризовать сущность и механизм пресинаптического торможения;

    Знать медиаторные и ионные ТПСП, лежащие в основе пресинаптического торможения;

    Уметь охарактеризовать принципиальные возможности нейронной деятельности, способствующие ослаблению процесса возбуждения (торможение вслед за возбуждением, пессимум, оклюзия);

    Уметь четко определить биологическое значение и возможности возникновения каждой разновидности центрального торможения;

    Уметь рассмотреть взаимодействие процессов возбуждения и торможения как необходимое условие для наилучшего осуществления рефлекторных актов организма;

    Знать, что в основе координации рефлексов лежат принципы и особенности распространения возбуждения и торможения в ЦНД;

    Знать сущность наиболее важных принципов координационной деятельности ЦНС (реципрокность, обратная связь, окклюзия, облегчение, конечный путь, доминанта, субординация).

Нервная система человека и животных может быть представлена как система нейронных цепочек, передающих возбуждающие и тормозные сигналы (нервная сеть). Эти элементарные нейронные цепи служат, например, для усиления слабых сигналов, уменьшения слишком интенсивной активности, выделения контрастов, поддержания ритмов или сохранения рабочего состояния нейронов путем регулировки их входов. Такие нейронные цепи построены из стандартных элементов, которые выполняют наиболее часто повторяющиеся операции и могут быть включены в схемы самых разнообразных нервных структур.

Существуют значительные количественные различия нервных сетей у разных видов позвоночных и беспозвоночных. Так, у человека нервная система включает около 10 10 элементов, у примитивных беспозвоночных - около 10 4 нейронов, Однако в строении и функционировании всех нервных систем имеются общие черты. Практически во всех отделах центральной нервной системы обнаружены дивергенция нервных путей, конвергенция нервных путей и различные варианты тормозных связей между элементами нервных цепочек.

Дивергенция и конвергенция путей . Дивергенция (расхождение) пути (рис 2.А) - возникает в результате контактирования одного нейрона с множеством нейронов более высоких порядков. Так, например, происходит разделение аксона чувствительного нейрона, входящего в спинной мозг, на множество веточек (коллатералей), которые направляются к разным сегментам спинного мозга и в головной мозг, где происходит передача сигнала на вставочные и далее - на моторные нервные клетки. Дивергенция пути сигнала наблюдается так же у вставочных и у эффекторных нейронов.

Рис 2. Дивергенция (А), конвергенция (Б) и пространственная суммация (В) нервных путей в центральной нервной системе.

Дивергенция пути обеспечивает расширение сферы действия сигнала, благодаря ей, информация поступает одновременно к разным участкам ЦНС. Это называют иррадиацией возбуждения (или торможения). Дивергенция настолько обычное явление, что можно говорить о принципе дивергенции в нейронных цепях.

Конвергенция - это схождение многих нервных путей к одним и тем же нейронам (рис 2.Б). Например, у позвоночных на каждом мотонейроне спинного мозга и ствола головного мозга образуют нервные окончания тысячи сенсорных, а также возбуждающих и тормозных вставочных нейронов разных уровней. Мощная конвергенция обнаруживается и на нейронах ретикулярной формации ствола мозга, на многих корковых нейронах у позвоночных и, видимо, на командных нейронах.

Конвергенция многих нервных путей к одному нейрону делает этот нейрон интегратором соответствующих сигналов. Вероятность возбуждения такого нейрона-интегратора зависит не от каждого пришедшего стимула в отдельности, а от суммы и направления стимулов, действующих одновременно, то есть суммы всех синаптических процессов происходящих на его плазматической мембране. Другими словами, вероятность распространения возбуждения через нейрон-интегратор определяется алгебраическим сложением величин возбуждающих и тормозных входов на нем, активных в данный момент. Такое сложение является результатом или пространственной или временной суммации . Пространственная суммация – результат сложения нервных импульсов приходящих одновременно к нейрону через разные синапсы (рис 2.В), временная суммация – сложение приходящих поочередно, через один синапс с небольшими интервалами времени. В обоих случаях нейрон интегратор, называют общим путем для конвергирующих на него нервных сигналов, а если речь идет о мотонейроне, т. е. конечном звене нервного пути к мускулатуре, говорят об общем конечном пути .

Результат суммации заключается в возможности изменения направления распространения возбуждения в ЦНС, (то есть не строго в пределах одной рефлекторной дуги), а значит и в изменении характера ответной реакции организма в ответ на действие раздражителя. Ответ организма, реализуемый в результате, становится более адекватным внешним условиям и состоянию нервной системы. Пример такого выбора ответа можно видеть, если речь идет о конвергенции не на одном нейроне, а на группе нейронов совместно регулирующих общую функцию, что в ЦНС не редкость. Наличие конвергенции множества путей на одной группе мотонейронов лежит в основе феноменов пространственного облегчения и окклюзии .

Пространственное облегчение - это превышение эффекта одновременного действия двух относительно слабых афферентных возбуждающих входов в ЦНС над суммой их раздельных эффектов. Т.е. при раздельном действии афферентных сигналов возбуждение возникает в меньшем числе эфферентных нейронов и эффект оказывается слабее. Феномен объясняется суммацией совместно возникающих ВПСП до критического уровня деполяризации в группе мотонейронов, в которых при раздельной активации входов ВПСП оказывались слишком слабыми для генерации ответа.

Окклюзия - это явление, противоположное пространственному облегчению. В этом случае эффект окажется выше если афферентные сигналы действуют порознь, а при их совместном действии возбуждается меньшая группа мотонейронов. Причина окклюзии состоит в том, что здесь афферентные входы в силу конвергенции частично связаны с одними и теми же мотонейронами, и каждый может возбуждать их, как и оба входа вместе.

Таким образом, если эффект нескольких стимулов, поступающих одновременно или в быстрой последовательности будет выше, чем сумма эффектов отдельных стимулов то это явление называется облегчением; если же эффект на сочетание стимулов меньше, чем сумма ответов на отдельные стимулы, то такое явление - окклюзия.

Такое явление следует учитывать, например, при тренировке различных функцинальных показателей скелетных мышц.

Простые тормозные и усиливающие цепи .

Тормозные цепи, виды торможения. Торможение, как и возбуждение, - активный процесс, оно возникает в результате сложных физико-химических изменений в тканях. Благодаря процессу торможения достигается ограничение рас­пространения возбуждения в ЦНС и обеспечивается координация рефлекторных актов, внешне этот процесс проявляется ослаблением функции какого-либо органа.

Открытие торможения в ЦНС было сделано основоположником русской физиологии И. М. Сеченовым. В 1862 г. Им были проведены классические опыты, получившие название «центральное торможение». И. М. Сеченов на зрительные бугры лягушки, отделенные от больших полушарий головного мозга, помещал кристаллик хлорида натрия (поваренная соль) и наблюдал при этом увеличение времени спинномозговых рефлексов. После устранения раздражителя рефлекторная деятельность спинного мозга восстанавливалась. Результаты этого опыта позволили И. М. Сеченову сделать заключение о том, что в центральной нервной системе наряду с процессом возбуждения развивается и процесс торможения, способный угнетать рефлекторные акты организма.

К настоящему времени анализ тормозных явлений в ЦНС позволил выделить две формы разновидности постсинаптическое и пресинаптическое торможение.

Постсинаптическое торможение развивается не постсинаптических мембранах межнейронных синапсов и связано с гиперполяризацией постсинаптической мембраны под влиянием медиаторов, которые выделяются при возбуждении специальных тормозных нейронов. При этом, локально возникающая на постсинаптической мембране гиперполяризация - тормозной постсинаптический потенциал (ТПСП) – затрудняет электротоническое распространение возбуждающих постсинаптических потенциалов (ВПСП) от других синапсов, к аксонному холмику. В результате в зоне аксонного холмика не происходит выведение мембранного потенциала на критический уровень. Потенциал действия не образуется, нейрон не возбуждается.

Постсинаптическое торможение активно используется в нейронных сетях, и в зависимости от вариантов связывания нейронов друг с другом выделяют несколько его видов: реципрокное (прямое), параллельное, возвратное, латеральное (рис.3)

Реципрокное торможение (рис 3.А) – это взаимное (сопряженное) торможение центров антагонистических рефлексов, обеспечивающее координацию этих рефлексов. Классический пример реципрокного торможения - это торможение мотонейронов мышц-антагонистов у позвоночных. Торможение осуществляется с помощью специальных тормозных вставочных нейронов. При активации путей, возбуждающих, например, мотонейроны мышц-сгибателей, мотонейроны мышц-разгибателей тормозятся импульсами вставочных клеток.

Возвратное торможение (рис. 3.Б) - это торможение нейронов собственными импульсами, поступающими по возвратным коллатералям к тормозным клеткам. Возвратное торможение наблюдается, например, в мотонейронах спинного мозга позвоночных. Эти клетки отдают возвратные коллатерали в мозг к тормозным вставочным клеткам Реншоу, которые имеют синапсы на этих же мотонейронах. Торможение обеспечивает ограничение ритма мотонейронов, позволяющее чередовать сокращение и расслабление скелетной мышцы, что важно для нормальной работы двигательного аппарата.

Такую же роль играет возвратное торможение и в других нервных сетях.

Параллельное торможение (рис. 3.В) – играет сходную с возвратным роль, но в этом случае возбуждение блокирует само себя, посылая тормозной сигнал на нейрон который одновременно и активирует.

Это возможно, если возбуждающий импульс сам не должен вызвать возбуждения на нейроне-мишени, но его роль важна при пространственной суммации, в комбинации с другими сигналами.

Латеральное торможение (рис. 3.Г) – это торможение нервных клеток, расположенных по соседству с активной, которое этой клеткой и инициируется. При этом вокруг возбужденного нейрона возникает зона, в которой развивается очень глубокое торможение.

Латеральное торможение наблюдается, например, в конкурирующих сенсорных каналах связи. Оно наблюдается у соседних элементов сетчатки позвоночных, а также в их зрительных, слуховых и других сенсорных центрах. Во всех случаях латеральное торможение обеспечивает контраст , т. е. выделение существенных сигналов или их границ из фона.

Рис. 3. Разновидности постсинаптического торможения: А – реципрокное, Б – возвратное, В – параллельное, Г- латеральное. Темные нейроны – возбуждающие, светлые – тормозные.

Пресинаптическое торможение развивается в аксо-аксональных синапсах, образованных на пресинаптических окончаниях нейрона.

В основе пресинаптического торможения лежит развитие медленной и длительной деполяризации пресинаптического окончания, что и приводит к развитию торможения. В деполяризованном участке нарушается процесс распространения возбуждения и поступающие к нему импульсы, не имея возможности пройти зону деполяризации в обычном количестве и обычной амплитуде, не обеспечивают выделения достаточного количества медиатора – нейрон не возбуждается.

Деполяризацию пресинаптической терминали вызывают специальные тормозные вставочные нейроны, аксоны которых и образуют синапсы на пресинаптических окончаниях аксона-мишени.

Разновидности пресинаптического торможения изучены недостаточно, вероятно они те же, что и для постсинаптического торможения. Точно известно о наличии параллельного и латерального пресинаптического торможения (рис. 4).

Рис. 4. Разновидности пресинаптического торможения: А – параллельное, Б – латеральное. Темные нейроны – возбуждающие, светлые – тормозные.

В реальной действительности взаимоотношения возбуждающих и тормозных нейронов значительно сложнее, чем представлено на рисунках, тем не менее, все варианты пре- и постсинаптического торможения можно объединить в две группы. Во-первых, когда блокируется собственный путь самим распространяющимся возбуждением с помощью вставочных тормозных клеток (параллельное и возвратное торможение), во-вторых, когда блокируются другие нервные элементы под влиянием импульсов от соседних возбуждающих нейронов с включением тормозных клеток (латеральное и прямое торможение).

Кроме того, тормозные клетки сами могут быть заторможены другими тормозными нейронами, это может облегчить распространение возбуждения.

Роль процесса торможения.

    Оба известных вида торможения со всеми их разновидностя­ми выполняют, прежде всего, охранительную роль. Отсутствие торможения привело бы к истощению медиаторов в аксонах нейронов, утомлению, истощению и прекращению деятельности ЦНС.

    Торможение играет важную роль в обработке поступающей в ЦНС информации. Особенно ярко выражена эта роль у пресинаптического торможения. Оно более точно регулирует процесс возбуждения, поскольку этим торможением могут быть полностью заблокированы отдельные нервные волокна. К одному возбуждающему нейрону могут приходить сотни и тысячи различных импульсов по разным путям, но число дошедших до нейрона импульсов определяется пресинаптическим торможением.

    Поскольку блокада торможения ведет к широкой иррадиации возбуждения и судорогам, следует признать, что торможение является важным фактором обеспечения координационной деятельности ЦНС.

Усиливающие цепи и механизмы усиления . Нейронные сети имеют не только тормозные механизмы, препятствующие распространению возбуждения, но и системы, усиливающие приходящий к ним сигнал. Рассмотрим некоторые из них.

Самовозбуждающиеся нервные цепи (цепи с положительной обратной связью) (рис.5). Некоторые данные свидетельствуют о том, что в мозгу животных и человека существуют замкнутые самовозбуждающиеся цепочки нейронов, в которых нейроны соединены синапсами возбуждающего действия. Возникнув в ответ на внешний сигнал, возбуждение в такой цепочке циркулирует, иначе реверберирует , до тех пор, пока или какой-либо внешний тормоз не выключит одно из звеньев цепи, или в ней не наступит утомление. Выходные пути от такой цепочки (ответвляющиеся по коллатералям аксонов нервных клеток - участников цепи) во время работы передают равномерный поток импульсов, создающий ту или иную настройку в нервных клетках-мишенях. Ее функции могут состоять в том, чтобы обеспечивать длительное поддержание индуцированной однажды активности.

Рис.5. Самовозбуждающаяся нервная цепочка

Таким образом, самовозбуждающаяся цепочка, пока она работает, как бы «помнит» тот краткий сигнал, который включил в ней циркуляцию (реверберацию) импульсов. Считают, что это возможный механизм (или один из механизмов) краткосрочной памяти, однако этому практически нет экспериментальных доказательств.

Синаптическая потенциация - увеличение амплитуды постсинаптического потенциала, если интервал между последовательным возникновением потенциалов действия в пресинаптической мембране невелик, то есть происходит частая и ритмическая активация синапса. Явление потенциации связывают с накоплением ионов кальция в пресинаптическом окончании, который дополнительно вбрасывается туда при каждом новом стимуле и не успевает полностью удаляться между частыми стимулами. Вследствие этого, каждый новый пресинаптический потенциал вызывает высвобождение большего числа квантов медиатора.

Такую же природу имеет и посттетаническая потенциация . В этом случае увеличение числа квантов медиатора, высвобождаемых нервным импульсом, после предшествующего ритмического раздражения приводит к увеличению синаптической реакции нейрона на одиночное раздражение пресинаптических путей. Посттетаническая потенциация может длиться от нескольких минут до нескольких часов в различных структурах мозга. Предполагают, что постсинаптическая потенциация играет важную роль в пластических перестройках функций синапсов, и лежит в основе механизмов организации условных рефлексов и памяти. Например, особенно длительная посттетаническая потенциация обнаружена в гиппокампе – структуре, которая, играет важную роль в явлениях памяти и научения.

Ритмическая стимуляция может приводить и к снижению активности синапсов. Процесс снижения постсинаптических потенциалов во время или по окончании тетанической стимуляции по сравнению с исходной амплитудой называется синаптической депрессией ; по аналогии с потенциацией, различают тетаническую и посттетаническую депрессию. Возможно, синаптическая депрессия имеет место во многих участках нервной системы и является нейронным коррелятом привыкания (габитуации). У беспозвоночных габитуация простых поведенческих реакций прямо соответствует депрессии участвующих синапсов; то же самое относится и к флексорному рефлексу у кошки. Таким образом, синаптическая депрессия, так же как синаптическая потенциация, составляет элементарный процесс научения.

Принципы координации в деятельности ЦНС.

В условиях физиологической нормы работа всех органов и систем тела является согласованной: на воздействия из внешней и внутренней среды организм реагирует как единое целое. Согласованное проявление отдельных рефлексов, обеспечивающих выполнение целостных рабочих актов, носит название координации.

Явления координации играют важную роль в деятельности двигательного аппарата. Координация таких двигательных актов, как ходьба или бег, обеспечивается взаимосвязанной работой нервных центров.

За счет координированной работы нервных центров осуществляется совершенное приспособление организма к условиям существования. Это происходит не только за счет деятельности двигательного аппарата, но и за счет изменений вегетативных функций организма (процессов дыхания, кровообращения, пищеварения, обмена веществ и т.д.).

Установлен ряд общих закономерностей - принципов координации: принцип конвергенции; принцип иррадиации возбуждения; принцип реципрокности; принцип последовательной смены возбуждения торможением и торможения возбуждением; феномен «отдачи»; цепные и ритмические рефлексы; принцип общего конечного пути; принцип обратной связи; принцип доминанты.

Разберем некоторые из них.

Принцип конвергенции . Этот принцип установлен английским физиологом Шеррингтоном. Импульсы, при ходящие в центральную нервную систему по различным афферентным волокнам, могут сходиться (конвергировать) к одним и тем же вставочным и эфферентным нейронам. Конвергенция нервных импульсов объясняется тем, что афферентных нейронов в несколько раз больше, чем эфферентных, поэтому афферентные нейроны образуют на телах и дендритах эфферентных и вставочных нейронов многочисленные синапсы.

Принцип иррадиации . Импульсы, поступающие в центральную нервную систему при сильном и длительном раздражении рецепторов, вызывают возбуждение не только данного рефлекторного центра, но и других нервных центров. Это распространение возбуждения в центральной нервной системе получило название иррадиации. Процесс иррадиации связан с наличием в центральной нервной системе многочисленных ветвлений аксонов и особенно дендритов нервных клеток и цепей вставочных нейронов, которые объединяют друг с другом различные нервные центры.

Принцип реципрокности (сопряженности) в работе нервных центров. Суть его заключается в том, что при возбуждении одних нервных центров деятельность других может затормаживаться. Принцип реципрокности был показан по отношению к нервным центрам мышц-антагонистов - сгибателей и разгибателей конечностей. Только при такой взаимосочетанной (реципрокной) иннервации возможен акт ходьбы.

Наиболее отчетливо он проявляется у животных с удаленным головным мозгом и сохраненным спинным (спинальное животное), но может происходить сопряженное, реципрокное торможение и других рефлексов. Под влиянием головного мозга реципрокные отношения могут изменяться. Человек или животное в случае необходимости может сгибать обе конечности, совершать прыжки и т. д.

Реципрокные взаимоотношения центров головного мозга определяют возможность человека овладеть сложными трудовыми процессами и не менее сложными специальными движениями, совершающимися при плавании, акробатических упражнениях и пр.

Принцип общего конечного пути . Этот принцип связан с особенностью строения центральной нервной системы. Эта особенность, как уже указывалось, состоит в том, что афферентных нейронов в несколько раз больше, чем эфферентных, в результате чего различные афферентные импульсы сходятся к общим выходящим путям.

Количественные соотношения между нейронами схематически можно представить в виде воронки: возбуждение вливается в центральную нервную систему через широкий раструб (афферентные нейроны) и вытекает из нее через узкую трубку (эфферентные нейроны). Общими путями могут быть не только конечные эфферентные нейроны, но и вставочные.

Импульсы, сходящиеся в общем пути, «конкурируют» друг с другом за использование этого пути. Так достигается упорядочение рефлекторного ответа, соподчинение рефлексов и затормаживание менее существенных. Вместе с тем организм получает возможность реагировать на различные раздражения из внешней и внутренней среды при помощи сравнительно небольшого количества исполнительных органов.

Принцип обратной связи . Этот принцип изучен И. М. Сеченовым, Шеррингтоном, П. К. Анохиным и рядом других исследователей. При рефлекторном сокращении скелетных мышц возбуждаются проприорецепторы. От проприорецепторов нервные импульсы несущие информацию о характеристиках этого мышечного сокращения вновь поступают в центральную нервную систему. Этим контролируется точность совершаемых движений. Подобные афферентные импульсы, возникающие в организме в результате рефлекторной деятельности органов и тканей (эффекторов), получили название вторичных афферентных импульсов , или обратной связи.

Обратные связи могут быть положительными и отрицательными. Положительные обратные связи способствуют усилению рефлекторных реакций, отрицательные - их угнетению. За счет положительных и отрицательных обратных связей осуществляется, например, регуляция относительного постоянства величины артериального давления.

Принцип доминанты. Принцип доминанты сформулирован А. Л. Ухтомским, Этот принцип играет важную роль в согласованной работе нервных центров. Доминанта - это временно господствующий очаг возбуждения в центральной нервной системе, определяющий характер ответной реакции организма на внешние и внутренние раздражения.

Доминантный очаг возбуждения характеризуется следующими основными свойствами:

    повышенной возбудимостью;

    стойкостью возбуждения;

    способностью к суммированию возбуждения;

    инерцией, доминанта в виде следов возбуждения может длительно сохраняться и после прекращения вызвавшего ее раздражения.

Доминантный очаг возбуждения способен притягивать (привлекать) к себе нервные импульсы из других нервных центров, менее возбужденных в данный момент. За счет этих импульсов активность доминанты еще больше увеличивается, а деятельность других нервных центров подавляется.

Доминанты могут быть экзогенного и эндогенного происхождения. Экзогенная доминанта возникает под влиянием факторов окружающей среды. Например, при чтении интересной книги человек может не слышать звучащую в это время по радио музыку.

Эндогенная доминанта возникает под влиянием факторов внутренней среды организма, главным образом гормонов и других физиологически активных веществ. Например, при понижении содержания питательных веществ в крови, особенно глюкозы, происходит возбуждение пищевого центра, что является одной из причин пищевой установки организма животных и человека.

Доминанта может быть инертной (стойкой), и для ее разрушения необходимо возникновение нового более мощного очага возбуждения.

Доминанта лежит в основе координационной деятельности организма, обеспечивая поведение человека и животных в окружающей среде, а также эмоциональных состояний, реакций внимания. Формирование условных рефлексов и их торможение также связано с наличием доминантного очага возбуждения.



Copyright © 2024 Медицинский портал - Здравник.