Колориметрия. Особенности выполнения анализа колориметрическими методами Колориметрия химический метод

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство здравоохранения и социального развития РФ

Министерство Здравоохранения Оренбургской области

ГАОУ СПО «Оренбургский областной медицинский колледж»

Реферат на тему

«Колориметрические методы анализа. Общая характеристика. Примеры определения»

Пушишина Анастасия Константиновна

Оренбург 2012

1 .Определение колориметрии

3. Примеры определений

1. Определение колориметрии

Колориметрия (от лат. color -- цвет и греч. мефсю -- измеряю) -- физический метод химического анализа, основанный на определении концентрации вещества по интенсивности окраски растворов (более точно -- по поглощению света растворами).

Колориметрия -- это метод количественного определения содержания веществ в растворах, либо визуально, либо с помощью приборов, таких как колориметры.

колориметрия фотометрия свет спектроколориметрия

2. История возникновения колориметрии и фотометрии

Один из первых колориметров, созданный французским оптиком Жюлем Дюбоском, 1980.

Любопытная история возникновения колориметрии и фотометрии. Ю. А. Золотов упоминает, что Роберт Бойль (так же, как и некоторые ученые до него) использовал экстракт дубильных орешков, чтобы различить железо и медь в растворе. Однако, по-видимому, именно Бойль впервые заметил, что чем больше железа содержится в растворе, тем более интенсивна окраска последнего. Это был первый шаг к колориметрии. А первым инструментом колориметрии стали колориметры типа колориметра Дюбоска (1870), которые использовались вплоть до недавнего времени.

Более совершенные приборы -- спектрофотометры -- отличаются возможностью исследования оптической плотности в широком диапазоне длин волн видимого спектра, а также в ИК и УФ-диапазонах, с меньшей дискретностью длины волны (с использованием монохроматора).

Фотоколориметры и спектрофотометры измеряют величину пропускания света при определенной длине волны света. Контроль (обычно дистиллированная вода или исходный материал без добавления реагентов) используется для калибровки устройства.

Колориметрия широко применяется в аналитической химии, в том числе для гидрохимического анализа, в частности -- для количественного анализа содержания биогенных веществ в природных водах, для измерения pH, в медицине, а также в промышленности при контроле качества.

Фотоколориметрия -- количественное определение концентрации вещества по поглощению света в видимой и ближней ультрафиолетовой области спектра. Поглощение света измеряют на фотоколориметрах или спектрофотометрах.

3. Примеры определений

Колориметрические методы основываются на фотометрическом сравнении густоты окраски исследуемого раствора, рассматриваемого в пропущенном свете, с окраской нормального раствора, содержащего определенное количество этого красящего вещества, или же с окраской некоторой эмпирически подобранной окрашенной середины, принятой за норму. В основе К. лежат следующие положения:

1) светопоглощающая сила раствора окрашенного вещества в бесцветном растворителе растет пропорционально концентрации и толщине слоя жидкости, следовательно:

2) если приготовить два раствора разной концентрации того же красящего вещества в том же бесцветном растворителе, и найти такой толщины слои их, что рассмотренные в пропущенном свете они дадут одну силу света и окраски, то толщины этих слоев обратно пропорциональны содержанию в них красящего вещества. Всякое фотометрическое сравнение сводится к определению условий, при которых наступает равенство двух освещений, поэтому и в К., рассматривая свет, прошедший через слой нормальной жидкости, и свет, проходящий через слой исследуемой жидкости, мы меняем эти слои до тех пор, пока не получим равенства в силе пропущенного света. Так как поглощение окрашенными растворами лучей разного цвета (различной длины волны) растет неодинаково с увеличением содержания красящего вещества, то лишь при равенстве в силе пропущенного света наступит и равенство окраски; при невыполнении первого условия, цвета растворов будут слегка другие.

Довести два слоя раствора до равенства поглощения света можно: 1) добавляя при постоянной толщине слоя в один из них бесцветного растворителя до тех пор, пока сила пропущенного света и окраска его не будут одинаковы; по количеству прибавленного растворителя можно легко рассчитать отношение концентрации исследуемого раствора и нормального; 2) удлиняя более слабо окрашенный слой жидкости до тех пор, пока поглощение света двумя слоями раствора не будет одинаково; тогда обратное отношение высот слоев жидкости даст отношение их концентрации.

По первому методу, теоретически более совершенному, был устроен один из первых колориметров, а именно колориметр Гутон-Лабильярдьера, построенный Саллероном. Он представлял зачерненный внутри деревянный ящик, в одной из боковых стенок которого прорезаны были две щели, освещенные извне светом, отраженным от зеркала. За щелями стоят две одинаковой толщины кюветки с плоскими стеклянными стенками; в одной из них находится нормальная жидкость определенной концентрации, в другой исследуемый раствор. В противоположной стенке прорезаны отверстия для глаз наблюдателя, в поле зрения которого видны две окрашенные щели. Прибавляя в более крепкий раствор бесцветного растворителя из градуированной бюретки, наблюдатель стремится достигнуть равенства освещений и окраски щелей; по количеству прибавленного растворителя рассчитывается концентрация раствора. Неудобство этого прибора заключается в самом методе, причина же малой точности даваемых им результатов лежит в его конструкции; действительно, глаз способен легко сравнивать освещение и окраску лишь двух соприкасающихся полей, по мере же удаления их друг от друга трудность сравнения увеличивается. Удобнее колориметры, основанные на 2-м методе, например колориметр Вольфа, один из первых, построенных по этому типу. Он состоит из 2-х стеклянных трубок A и B, деленных на мм, закрытых снизу пришлифованными пластинками и снабженных кранами (фиг. 1).

Свет, идущий от зеркала C, проходит через трубки и, дважды отразившись в стеклянных призмах D , выходит двумя смежными пучками из верхней общей плоскости призм. Наблюдатель смотрит через направленную на эту плоскость лупу и видит поле зрения, разделенное линией -- гранью касания двух призм -- на две части; одна половина освещена светом, прошедшим через A , другая через B. В A , положим, наливают до некоторой высоты нормальный раствор, B наполняют исследуемым раствором и выпускают из A и B, посредством кранов, жидкости до тех пор, пока обе половины поля не окажутся одинаковыми и линия раздела не исчезнет. Тогда обратное отношение высот столбов жидкостей в A и B даст отношение их концентраций; для облегчения вычисления высоту столба менее концентрированной жидкости берут равным 100 мм. Дюбоск значительно упростил обращение с прибором, заменив краны двумя массивными стеклянными цилиндрами T, T (фиг. 2), с плоско отшлифованными основаниями, которые по желанию могут быть более или менее глубоко опущены в стаканчики C и C ; это дает возможность удобно менять толщину слоя жидкости между нижней плоскостью цилиндров и дном стаканчика, т. е. именно толщину слоя, через который проникает свет.

Этот тип приборов весьма удобен. Для увеличения их чувствительности рекомендуют пользоваться иногда дымчатыми стеклами, поставленными на пути лучей, или прозрачными (желатиновыми или коллодионными) окрашенными пленками, подобранными так по отношению к цвету растворов, чтобы различной толщины слои давали через них не только разную силу света, но и заметно разное окрашивание. Прибор можно еще улучшить, усовершенствовав фотометрическую часть его; так, в последнее время к К. применили принцип фотометра (см.) Бунзена, в виде, данном ему Луммером и Бродгуном (фиг. 3).

Луч G 1 , идущий из A , попадает в призму P , которая кончается частью шаровой поверхности с пришлифованной фасеткой; этой фасеткой P прижимается к другой призме p. Пучок лучей G 1 отражается внутри призмы и та часть его, которая попадает на фасетку, следует дальше черезp в лупу L; остальные лучи рассеиваются, отражаясь от шаровой поверхности. Пучок G 2 отражается лишь от частей призмы p, не соприкасающихся с фасеткой, лучи же попадающие в место соприкосновения проходят насквозь вверх. Глаз видит в поле зрения светлое пятно на темном фоне или темное пятно на светлом, смотря по тому, сильнее ли пучок G 1 или G 2 ; исчезновение пятна указывает на равенство освещения.

Значительной точности достигла К. с устройством поляризационных колориметров. Первый подобный прибор построен Дюбоском, но наиболее известен поляризационный колориметр Крюсса. Основные части его те же, что у колориметра Дюбоска, но, как видно по фиг. 4, лучи из A и B , проходя через поляризующую призму выходят двумя смежными пучками, поляризованными в двух перпендикулярных плоскостях; перед лупой поставлена анализирующая призма Николя (см.).

Если вращать Николеву призму, то попеременно то одно поле, то другое будут темнеть, но перед призмой вставлена еще двойная кварцевая пластинка, одна половина которой вращает плоскость поляризации вправо, другая влево; линия деления кварца перпендикулярна к линии деления световых пучков, и поэтому поле зрения представляется разделенным на 4 части. Ввиду того, что кварц вращает плоскость поляризации неодинаково для разных лучей, все поля будут вообще казаться разноокрашенными, и лишь в одном положении Николевой призмы все поля будут казаться одинаково освещенными, и накрест лежащие поля одинаково окрашенными. Если сосуды A и B будут наполнены жидкостями, то равенство освещения и окраски нарушится и восстановится лишь тогда, когда слои A и B будут эквивалентны, т. е. обратное отношение их толщин будет равно отношению их концентраций. Этот колориметр значительно точнее ранее описанных, так как глаз весьма чувствителен к одновременным переменам освещения и окраски двух смежных полей. Бывают случаи, когда указанные колориметрические методы не приводят к цели -- это когда нужно определить присутствие и количество красящего вещества, прибавленного для фальсификации окрашенной жидкости (так иногда окраску красного вина улучшают прибавлением фуксина); общий цвет раствора фуксиновых солей тот же, что у природного красного вина, поэтому обыкновенные колориметрические методы не дают в этом случае ответа. Тогда прибегают к спектроколориметрии, т. е. к сравнению состава света, прошедшего через нормальную жидкость, с составом света, прошедшего через испытуемую. Для этой цели оба пучка света разлагаются спектроскопом и сравнивают силы света различных частей полученных двух спектров. Первый спектроколориметр построен Крюссом (подробнее см. Спектральный анализ, Спектрофотометр).

Применения К. Колориметрическими методами пользуются в аналитической химии тогда, когда требуется быстро определить количественное содержание в растворе окрашенного вещества, или когда содержание этого вещества столь незначительно, что обыкновенными аналитическими методами его трудно определить; при этом иногда содержащееся в растворе вещество само не окрашено, но может быть переведено в окрашенное соединение. Основные условия для успеха колориметрического опыта: точно известный состав нормальной жидкости, отсутствие мути в жидкостях и равенство их t°; глаз наблюдателя должен быть неутомленным, между отдельными опытами должно дать глазу отдохнуть. Точность определения от 0,1-1,0%, чувствительность во многих случаях чрезвычайно велика. Примеры применения К.: 1) определение содержания медного купороса в растворе; если раствор слишком слабый (мало окрашен), то прибавлением нашатырного спирта в избытке переводят нормальный и исследуемый растворы в более сильно окрашенные растворы аммиачно-медной соли. 2) Определение содержания хлора в воде; к воде прибавляют раствора азотнокислого серебра -- выделившееся хлористое серебро придает раствору опалесцирующий молочный цвет, который сравнивается с цветом нормального раствора хлористого натра (поваренной соли), также обработанного азотнокислым серебром. 3) Содержание красящего начала в красильных деревах, в индиго, в кошенили и т. д.

К. служит также для определения содержания в крови красящего начала -- гемоглобина, для каковой цели строят особенные приборы -- гемометры. В промышленности К. пользуются часто для определения достоинства различных продуктов по их окраске, например для определения достоинства (степени очистки) керосина, смазочных масел, пива, вина и т. д., также, на сахарных заводах для определения обесцвечивающей способности животного угля и т. д. Для этих целей выработан целый ряд специальных типов колориметров, служащих каждый для одного из упомянутых испытаний.

Размещено на Allbest.ru

...

Подобные документы

    Исследование спектров поглощения электромагнитного излучения молекулами различных веществ. Основные законы светопоглощения. Изучение методов молекулярного анализа: колориметрии, фотоколориметрии и спектрофотомерии. Колориметрическое определение нитрита.

    курсовая работа , добавлен 01.06.2015

    Составляющие тока заряжения. Способ осуществления выборки. Виды импульсных методов. Нормальная импульсная вольтамперометрия: влияние адсорбции, достоинства и недостатки, используемые приборы и материалы, отличительные черты от дифференциально-импульсной.

    контрольная работа , добавлен 07.06.2011

    Понятие точечного источника света. Законы освещенности, поглощения Бугера, коэффициент поглощения. Использование для измерения освещенности фотоэлемента, величина тока которого пропорциональна освещенности фотоэлемента. Обработка экспериментальных данных.

    лабораторная работа , добавлен 24.06.2015

    Оптические свойства полупроводников. Механизмы поглощения света и его виды. Методы определения коэффициента поглощения. Пример расчета спектральной зависимости коэффициента поглощения селективно поглощающего покрытия в видимой и ИК части спектра.

    реферат , добавлен 01.12.2010

    Теория атомно-абсорбционных измерений: излучение и поглощения света, понятие линии поглощения и коэффициента поглощения, контур линии поглощения. Принцип работы лазера. Описание работы гелий-неонового лазера. Лазеры на органических красителях.

    реферат , добавлен 03.10.2007

    Применение фотоколориметрии в биологии, медицине, фармации. Природа и основные характеристики оптического излучения, закономерности поглощения света веществом. Понятие об оптической плотности, светопропускании, светопоглощении. Схема фотометра КФК-3.

    методичка , добавлен 30.04.2014

    Устройство фотометрической головки. Световой поток и мощность источника света. Определение силы света, яркости. Принцип фотометрии. Сравнение освещенности двух поверхностей, создаваемой исследуемыми источниками света.

    лабораторная работа , добавлен 07.03.2007

    Сущность и физическое обоснование явления люминесценции как свечения вещества, возникающего после поглощения им энергии возбуждения, основные факторы, оказывающие на него непосредственное влияние. Люминесцентные источники света - газоразрядные лампы.

    реферат , добавлен 25.04.2014

    Значение света для жизни на Земле. Теории о развитии света. Характеристика волновых свойств света. Применение интерференции и дифракции света, представления о его природе. Фотонная молекула как новая форма материи, устройство среды ее существования.

    презентация , добавлен 07.05.2015

    Теоретические основы акустики. Рождение, характеристика, специфические особенности, измерение и коэффициент поглощения звука. Дифракция света на ультразвуке в анизотропной среде. Схемы и характеристики ультразвуковой аппаратуры. Применение ультразвука.

Интенсивность окраски растворов можно измерять визуальным и фотоколориметрическим методом. Визуальные методы в значительной степени субъективны, так как сравнение интенсивности окрашивания растворов проводят невооруженным глазом. Приборы, предназначенные для измерения интенсивности окраски визуальным методом, называют колориметрами. К визуальным колориметрическим методам относят: 1) метод стандартных серий; 2) метод колориметрического титрования; 3) метод уравнивания; 4) метод разбавления.

Метод стандартных серий (метод цветной шкалы). Приготавливают ряд стандартных растворов какого-либо вещества с постепенно изменяющимися концентрациями в определенном объеме растворителя, например 0,1; 0,2; 0,3; 0,4; 0,5 мг и т. д. до ~ 10 шт. Помещают определенный объем каждого стандартного и такой же объем анализируемого раствора в пробирку, добавляют равные объемы необходимых реактивов. Сравнивают интенсивность полученной окраски исследуемого и стандартных растворов. Если окраска анализируемого раствора по интенсивности совпадает с цветом стандартного раствора, содержащего 0,4 мг данного вещества, то содержание его в исследуемом растворе равно 0,4 мг. Если окраска исследуемого раствора соответствует промежуточной концентрации, например между 0,4 и 0,5 мг, то концентрацию анализируемого раствора берут средней между соседними концентрациями стандартных растворов (приблизительно 0,45 мг). Рекомендуется для получения более точных результатов приготовить промежуточные серии стандартных растворов.

Метод дает приближенные результаты и во время работы необходимо часто возобновлять шкалу из-за неустойчивости окраски некоторых стандартных растворов. При выполнении анализа методом стандартных серий не требуется соблюдения основного закона колориметрии.

Метод колориметрического титрования (метод дублирования). Определенный объем анализируемого окрашенного раствора неизвестной концентрации сравнивают с таким же объемом воды, к которой добавляют из бюретки окрашенный стандартный раствор того же вещества определенной концентрации до уравнивания интенсивности окрасок. По совпадению интенсивности окрасок стандартного и исследуемого растворов определяют содержание вещества в растворе неизвестной концентрации. Концентрацию вещества в анализируемом растворе с х (в г/мл) находят по формуле

где Г--титр стандартного раствора, г/мл; V--объем стандартного раствора, мл; V1--объем анализируемого раствора, взятый для колориметрирования, мл.

Метод неприменим при реакциях, протекающих медленно, и при необходимости дополнительных обработок (кипячение, фильтрование и др.).

Метод уравнивания. Сравнение интенсивности окрасок анализируемого и стандартного растворов проводят в колориметрах. Метод основан на том, что, изменяя толщину слоя двух растворов с различной концентрацией одного и того же вещества, добиваются такого состояния, при котором интенсивность светового потока, прошедшего через оба раствора, будет одинакова-- наступает оптическое равновесие. Оптическая плотность каждого раствора соответственно равна:

Метод уравнивания является наиболее точным методом колориметрирования.

Метод разбавления. Одинаковую интенсивность окраски анализируемого и стандартного растворов получают путем постепенного разбавления водой или соответствующим растворителем того раствора, который более окрашен.

Разбавление проводят в одинаковых узких цилиндрах с делениями на миллилитры и десятые доли. Два одинаковых по размерам и формам цилиндра с анализируемым и стандартными растворами помещают рядом в специальный штатив с экраном из матового стекла. В более интенсивно окрашенный раствор вливают воду или растворитель до тех пор, пока окраска обоих растворов не станет одинаковой. После совпадения окрасок растворов измеряют объемы растворов в цилиндрах и рассчитывают содержание веществ в растворе неизвестной концентрации.

Вещества по интенсивности окраски растворов (более точно - по поглощению света растворами).

Основные сведения

Один из первых колориметров, созданный французским оптиком Жюлем Дюбоском, 1880.

Колориметрия - это метод количественного определения содержания веществ в растворах , либо визуально , либо с помощью приборов, таких как колориметры .

Колориметрия может быть использована для количественного определения всех тех веществ, которые дают окрашенные растворы, или могут быть, с помощью химической реакции, дать окрашенное растворимое соединение. Колориметрические методы основываются на сравнении интенсивности окраски исследуемого раствора, изучаемого в пропущенном свете , с окраской эталонного раствора, содержащего строго определенное количество этого же окрашенного вещества, или же с дистиллированной водой.

Любопытна история возникновения колориметрии и фотометрии. Ю. А. Золотов упоминает, что Роберт Бойль (так же, как и некоторые ученые до него) использовал экстракт дубильных орешков, чтобы различить железо и медь в растворе. Однако, по-видимому, именно Бойль впервые заметил, что чем больше железа содержится в растворе, тем более интенсивна окраска последнего. Это был первый шаг к колориметрии. А первым инструментом колориметрии стали колориметры типа колориметра Дюбоска (1870) , которые использовались вплоть до недавнего времени .

Фотоколориметры и спектрофотометры измеряют величину пропускания света при определенной длине волны света. Контроль (обычно дистиллированная вода или исходный материал без добавления реагентов) используется для калибровки устройства.

Колориметрия широко применяется в аналитической химии, в том числе для гидрохимического анализа, в частности - для количественного анализа содержания биогенных веществ в природных водах, для измерения , в медицине, а также в промышленности при контроле качества продукции.

Фотоколориметрия

Фотоколориметрия - количественное определение концентрации вещества по поглощению света в видимой и ближней ультрафиолетовой области спектра. Поглощение света измеряют на фотоколориметрах или спектрофотометрах .

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Колориметрия (химический метод)" в других словарях:

    Не следует путать с калориметрия. Колориметрия (от лат. color цвет и греч. μετρεω измеряю): Колориметрия (наука) наука об измерении цвета. Колориметрия (химический метод) метод химического анализа … Википедия

    Изучает зависимости между составом и св вами макроскопич. систем, составленных из неск. исходных в в (компонентов). Для Ф. х. а. характерно представление этих зависимостей графически, в виде диаграммы состав свойство; применяют также таблицы… … Химическая энциклопедия

    Содержание … Википедия

    У этого термина существуют и другие значения, см. Химия (значения). Химия (от араб. کيمياء‎‎, произошедшего, предположительно, от египетского слова km.t (чёрный), откуда возникло также название Египта, чернозёма и свинца «черная… … Википедия

    В Викисловаре есть статья «органическая химия» Органическая химия раздел химии, изучающий со … Википедия

    У этого термина существуют и другие значения, см. Биохимия (значения). Биохимия (биологическая, или физиологическая химия) наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности.… … Википедия

    - (от др. греч. γῆ «Земля» и от λόγος «учение») наука о составе, строении и закономерностях развития Земли, других планет Солнечной системы и их естественных спутников. Содержание 1 История геологии … Википедия

    Социальная работа профессиональная деятельность по организации помощи и взаимопомощи людям и группам, попавшим в трудные жизненные ситуации, их психосоциальной реабилитации и интеграции. В самом общем виде социальная работа представляет… … Википедия

    Общие термины - Термины рубрики: Общие термины Абсолютно чёрное тело Абсолютный минимум Абсолютный показатель ресурсоиспользования и ресурсосбережения … Энциклопедия терминов, определений и пояснений строительных материалов

    Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Квантовая химия это направл … Википедия

Метод колориметрического определения С02 по Спектору и Доджу можно использовать для анализа небольших количеств воздуха; он меньше подходит для серийных анализов. Метод основан на ослаблении окраски 0,0001 н. раствора МаОН, окрашенного в красный цвет в присутствии избытка фенолфталеина, при действии С02 вследствие увеличения концентрации ионов водорода. В 0,0001 н. раствор ЫаОН добавляют спиртовый раствор фенолфталеина до тех пор, пока значение светопропускания для раствора в кювете (100 мм) колориметра или спектрофотометра при длине волны 515 нм станет равным 10%.[ ...]

Колориметрическим методом пользуются при анализе прозрачных и слегка мутных проб; весовой метод применяется при анализе сточных вод, особенно в тех случаях, когда надо определить раздельно растворенную и нерастворенную кремневую кислоту.[ ...]

Колориметрический метод определения N0 основан на образовании азотсоединения красного цвета при взаимодействии нитритов с реактивом Грисса (сульфаниловая кислота и а-нафтиламин). Эта реакция отличается высокой чувствительностью и позволяет обнаруживать тысячные доли милиграмма нитритов в 1 л воды (при содержании в анализируемой воде нитритов более 0,3. мг/л воду необходимо разбавить). Анализ выполняют на фотоколориметре с зеленым светофильтром.[ ...]

Метод анализа, основанный на сравнении качественного и количественного изменения световых потоков при их прохождении через исследуемый и стандартный растворы, называется колориметрическим. Это общее определение. Однако если подойти более строго, то данный метод основан на измерении ослабления светового потока, происходящего вследствие избирательного поглощения света определяемым веществом, и правильнее называть его абсорбционным спектральным анализом, Существуют спектрофотометрический и фотометрический методы абсорбционного анализа. Первый основан на измерении в монохроматическом потоке света (свет с определенной длиной волны /.), а второй - на измерении в не строго монохроматическом пучке света. Если рассматривать вопрос под таким углом зрения, то колориметрия - метод, основаный на измерении в видимой части спектра. Но мы под колориметрией будем подразумевать все методы определения концентрации вещества в растворе по поглощению света.[ ...]

Колориметрический метод рекомендуется для анализа прозрачных и слегка мутных вод, содержащих от 0,4 до 05 мг/л SiCb. Этот интервал может быть увеличен разбавлением исходной воды. Колориметрическим методом можно определить растворенные ортосиликаты, а также все растворенные силикаты реакцией с молибдатом после гидролиза в щелочной среде.[ ...]

Колориметрический метод с экстракцией диэтилдитиокарбамата меди хлороформом и прямой метод определения с тетраэтилгиурам-дисульфидом рекомендуются для анализа питьевых и поверхностных вод, а после минерализации пробы - и для анализа сточных вод, содержащих медь в концентрациях от 0,01 до 5 мг в 1 л. Полярографический метод применяется для определения меди в концентрациях, превышающих 0,05 мг/л, и особенно рекомендуется для определения меди в присутствии других металлов.[ ...]

Колориметрический метод. Анализ начинают с построения калибровочного графика, для чего используют растворы альбумина или казеина.[ ...]

Колориметрические методы долгое время были одними из основных при анализе органических примесей в воздухе рабочей зоны и атмосферы. Высокая селективность химических реакций позволяет и сегодня использовать многие из них (см. гл.[ ...]

Анализы воздуха для определения содержания элементарного хлора, как правило, проводят на рабочих местах предприятий. Из-за сильного раздражающего действия хлора интерес представляют низкие концентрации 0,1-1 млн-1. Обычные колориметрические методы для этого диапазона концентраций основаны на окислительных реакциях, которые не специфичны для хлора, поскольку присущи и другим окислителям, таким, как 1 Ю2 и оаон. Так как речь в первую очередь идет об исследованиях на производствах, где характер присутствующих вредных веществ не вызывает сомнений, это нельзя считать большим недостатком.[ ...]

Колориметрическим и спектрографическим методами с чувствительностью. 0,05 мг/л, а также методами объемного анализа .[ ...]

Анализ малых концентраций галогенорганических соединений в воздухе основывается преимущественно на отщеплении галогена каталитическим сожжением в кварцевой трубке, в ламповом приборе в виде раствора вещества в горючем растворителе, а в возможных случаях его омылением. Последующее определение галогена производится нефелометрически в виде галогенида серебра или колориметрически по цветной реакции с роданидом ртути(II). Известен способ окисления хлорпроизводных хромовой смесью с последующим улавливанием и определением свободного хлора. В настоящее время значительное внимание уделяется цветным реакциям с целью разработки чувствительных фотометрических методов непосредственного определения соединения.[ ...]

Колориметрический метод анализа основан на измерении окраски раствора или изменении его оттенка после прибавления к нему того или иного реактива.[ ...]

Колориметрический метод анализа может быть осуществлен визуально (простым глазом) и объективно с помощью фотоколориметров.[ ...]

Колориметрический метод определения калия основан на окислении дихроматом выделенного в осадок гексанитрокобальта (III) натрия и калия с последующим определением интенсивности окраски раствора на фотоэлектроколориметре или визуально в цилиндрах Несслера. Обязательным условием проведения анализа являются фильтрование пробы и концентрирование ее при содержании калия менее 100 мг/л. Анализу мешают ионы аммония, кремнекислота и органические вещества.[ ...]

При анализе почв основное различие между методами чаще всего состоит в применении различных растворов (вода. соли, кислоты в разной концентрации) для извлечения из почвы того или иного элемента, так как его количественное содержание в вытяжке может быть определено в ряде случаев общепринятыми в химии приемами. Например, калий, извлекаемый по методу Кирсанова 0,2-нормальной соляной кислотой, практически можно учесть объемным методом (при титровании), на пламенном фотометре и колориметрически. Основные методы агрохимического анализа почв приведены в табл. 98.[ ...]

Для анализа мутных, окрашенных вод или вод, содержащих вещества, мешающие определению, используют колориметрический метод с предварительн й отгонкой фтора.[ ...]

Для анализа задержанных поглотителями загрязняющих воздух примесей часто применяют различные физико-химиче-ские методы. Нужно иметь представление о методах - колориметрическом, спектрофотометрическом, нефелометрическом, люминесцентном, хроматографическом, полярографическом, спектрографическом и некоторых других. Более детально ознакомиться с методикой можно по книгам М. В. Алексеевой и Е. А. Перегуд, Е. В. Гернет . Особо следует остановиться на экспрессных методах определения воздушных загрязнений.[ ...]

Для анализа проб газа в подобных газоприемниках целесообразно применять такие методы, при которых реагент в виде раствора вводится под давлением в заполненный пробой воздуха приемник. Затем в результате многократного встряхивания реагент либо абсорбирует некоторые содержащиеся в воздухе газы, либо вступает с ними в реакцию; после этого проводят колориметрический анализ. Процесс абсорбции может быть значительно ускорен путем добавления к реагенту инертного пенообразующего вещества, например раствора арилалкилсуль-фоната , в таком количестве, которое достаточно для образования во время встряхивания сосуда тонкодисперсной пены.[ ...]

При анализе относительно концентрированных сточных вод (а иногда и разбавленных) используют титриметрические методы анализа с применением как цветных индикаторов для фиксирования конца титрования, так и специальных приборов - электрохимических (потенциометрическое титрование, ампёрометрическое, кондуктометрическое и т. п.) и оптических (турбидиметрическое титрование, нефелометрическое, колориметрическое). Титриметрические методы часто применяют для определения анионов, особенно тогда, когда одновременно присутствуют разные анионы, мешающие определению друг друга (см. разд. 10).[ ...]

Ход анализа. Обработка проб, взятых а с п -рационным методом. Поглотительную жидкость из каждого поглотителя анализируют отдельно. Для этого берут по 1,0 мл испытуемой жидкости в три колориметрические пробирки; таким образом, анализируют половину взятой пробы.[ ...]

При анализах воздуха высокочувствительными методами необходимо учитывать, что если определяемая величина ока-зывается близкой к чувствительности метода, то ошибка определения может быть весьма ощутимой. Во избежание этого следует, например, применяя колориметрические методы, использовать по возможности калибровочный график или сравнивать интенсивность окраски со шкалой в средней части графика пли шкалы .[ ...]

Этот метод использован главным образом в конструкции автоматического анализатора для окислов азота. Чувствительность такого метода анализа колеблется от 0,005 до 5 частей на миллион по объему; используя колориметрический реагент, можно фотоэлектрически измерить полученный цвет.[ ...]

Быстрые методы анализа растений, когда вытяжки приготовляют из сырого материала и после обработки их реактивами сравнивают со шкалой стандартных растворов в пробирках, и особенно упрощенные методы анализа сока при капельном колориметрическом определении менее точны, чем методы валового анализа (весовые, объемные и др.).[ ...]

Известные методы анализа оловоорганических соединений основаны на их разрушении и определении олова. Такой косвенный способ с колориметрическим окончанием предложен для определения органических соединений олова в сточных водах ; для определения олова используется чувствительная реакция с фенилфлуороном, однако метод сравнительно сложный и не отличается точностью. В связи с этим для определения оловоорганических соединений в сточных водах значительный интерес представляет полярографический метод, как более простой, специфичный и точный.[ ...]

Поскольку анализ атмосферного воздуха часто связан с необходимостью продолжительных отборов, с присутствием различных примесей в атмосфере и с необходимостью хранения и транспортировки проб, то вторая группа методов более перспективна для этих целей. Несомненный интерес в этой группе методов представляет метод с использованием реагентов TGS-ANSA, обладающий определенными преимуществами по сравнению с другими методами. К его серьезным недостаткам относится использование труднодоступного реагента (ANSA), ядовитого метилового спирта, а также обладающего сильным и неприятным запахом гваякола. Хотя эти недостатки не носят принципиального характера, они могут быть препятствием для широкого внедрения метода. Преимуществом метода Полежаева-Гириной является простота и доступность используемых реагентов, но он также не лишен недостатков: он требует большого расхода сравнительно дорого стоящего иодида калия, поглотительные растворы неустойчивы под действием сильных окислителей и прямых солнечных лучей. К тому же указания на возможную канцероген-ность нафтиламинов дают серьезные основания для поиска других, безвредных колориметрических реагентов.[ ...]

При выборе метода количественного определения нефтепродуктов в сточной воде основными требованиями являются чувствительность и возможность широкого применения в практике. Приведенные в табл. 5.1 методы анализа различаются между собой.[ ...]

Определяется колориметрическим методом с чувствительностью 0,001- 0,002 мг/л и спектрометрическим . По данным , чувствительность определения бериллия в водных растворах после обогащения проб составляет при спектральном анализе 10-8% (с точностью 5%). После обогащения проб определяется физико-химическими методами анализа .[ ...]

Предлагаемый колориметрический метод, как и кьельдалевский метод «мокрого» сожжения, не применим для анализа соединений, содержащих азот в окисленной форме (-Ж)2; -N0; -и т. д.), и для азотистых гетероциклов (пиридин и т. п.).[ ...]

Краткая оценка методов определения микроэлементов. Количественное определение микроэлементов в биологических субстратах может быть выполнено методами химического, колориметрического, полярографического и спектрального анализа (метод радиоактивационного анализа здесь не рассматривается). Каждый из них по сравнению с другими имеет как преимущества, так и недостатки. Зайдель (1965) и Шустов (1967) считают эмиссионный спектральный анализ наиболее совершенным методом для одновременного количественного определения большого числа микроэлементов. Благодаря высокой чувствительности и точности он дает возможность по небольшой навеске золы получить данные о качественном и количественном составе микроэлементов в анализируемой пробе. Применение этой методики в технике и медицине показало, что она является более производительной, универсальной и не менее точной, чем химический анализ, который требует отдельных специфических реакций для определения каждого элемента. Поэтому химический анализ наиболее целесообразен при определении одного или нескольких элементов при значительном содержании каждого из них в изучаемом веществе. Полярографический метод по точности и чувствительности не уступает спектральному. Однако он требует сложной химической подготовки проб к анализу и менее удобен при определении качественного состава микроэлементов. Колориметрический метод отличается простотой и доступностью, однако является менее точным и документальным.[ ...]

Основным принципом методов измерения, применяемых при колориметрическом и турбидиметрическом анализах, является поглощение в видимой части спектра. Как было показано, эти анализы могут быть использованы для определения газов и пылевых частиц. Эти методы часто обладают достаточной специфичностью, хотя иногда приходится изолировать и концентрировать исследуемое вещество, чтобы избежать помех вследствие присутствия других соединений.[ ...]

Важнейшими условиями для колориметрического метода анализа являются: устойчивость вещества при разбавлении раствора, избирательность реакции для исследуемого вещества, устойчивость окраски растворов во времени, достаточном для колориметрического определения, воспроизводимость окраски, пропорциональность между интенсивностью окраски и концентрацией вещества в растворе (соблюдение основного закона колориметрии). Однако некоторые методы колориметрического анализа не требуют соблюдения этого закона, например метод стандартных серий.[ ...]

Овладение физико-химическими методами исследования объектов окружающей среды невозможно без соответствующего лабораторного практикума. Такой практикум должен проводиться на современном теоретическом и практическом уровне в отношении как инструментальной техники, так и выбора объектов и методов обработки экспериментальных данных. Между тем пособий по такого рода практикуму до сих пор нет. Используемые в настоящее время колориметрические методы отличаются большой продолжительностью проведения анализа, субъективностью, не обладают экспрессностью, не позволяют автоматизировать процесс анализа. Результаты анализов, выполненных этими методами, невозможно регистрировать на приборах, они не определяют совокупность всех токсичных ингредиентов, содержащихся в одной пробе. Этих недостатков лишены описываемые в данном справочнике физико-химические методы анализа объектов окружающей среды.[ ...]

Основным недостатком рассмотренного колориметрического метода определения оксидов азота является необходимость стандартизации реагентов. Метод не может быть использован в качестве экспрессного из-за длительности его проведения. Для анализа воздуха в условиях, когда возможно быстрое изменение концентрации оксидов азота, например на автомобильных дорогах, необходимо применять другие инструментальные методы, например метод хемилюминесценции. Колориметрический метод определения N0 и Ы02 может быть использован для контроля выбросов из стандартных источников загрязнений, а также для анализа стандартных газовых смесей для калибровки хемилюминесцентных газоанализаторов .[ ...]

Неплохие результаты дает и химический метод анализа соединений, элюируемых из хроматографической колонки ¡, причем для этой цели обычно применяют колориметрические реакции. Достоинство метода в том, что в реакцию вступает индивидуальное вещество хроматографического пика (при условии достаточно полного разделения смеси примесей), и эту одерацию можно повторять многократно. Недостатком метода является низкая чувствительность применяемых для этой цели колориметрических реакций (0,1-1,0 мкг), особенно при использовании капиллярных колонок, максимально допустимый объем пробы для которых значительно ниже, чем в случае насадочных хроматографических колонок. Кроме того, почти однйвременное фиксирование идентифицируемой примеси детектором и последующая реакция этого вещества на выходе из колонки не всегда возможны, так как в некоторых детекторах (ПИД, ПФД) происходит разрушение пробы, а другие например, ЭЗД) очень сильно реагируют на изменение давления, газа-носителя в хроматографической системе, неизбежное при подключении на выходе из колонки жидкостного поглотителя.[ ...]

Очень удобным и чувствительным является колориметрический метод для анализа воды с помощью роданида ртути, применяемый для анализа воздуха в лаборатории австрийского азотного комбината. Пробу воздуха пропускают со скоростью 30 л/мин через 30 мл 0,01 н. NaOH в любой промывной склянке (с пористой пластинкой, склянка Дрекселя, склянка-отражатель). Содержимое склянки переливают в мерную колбу вместимостью 50 мл, подкисляют 3 каплями 2 н. HN03, добавляют 4 мл раствора, содержащего 1 г роданида ртути (II) в 100 мл метанола, а также 8 мл раствора, содержащего 8 г железо(1П)аммониевых квасцов в 100 мл 6 н. HN03, доливают водой до метки и измеряют оптическую плотность этого раствора при 460 нм в кювете с толщиной слоя 1 или 5 см в зависимости от интенсивности окраски относительно холостого значения реактивов. Калибровочную кривую строят с помощью раствора NaCl, содержащего 10-20 мкг СГ/мл, в интервале 0-200 мкг СГ в 50 мл реактивного раствора. Определению мешают другие галогениды, циан и сульфид.[ ...]

Во всех случаях, когда только это возможно, используют простые колориметрические методы анализа на базе компаратора с цветными стандартными образцами, позволяющими быстро получить результат в миллиграммах на литр. В остальных случаях анализы проводят объемным методом с применением специальных бюреток и непосредственным отсчетом по ним результатов, выраженных во французских градусах.[ ...]

Азот в форме нитритов и нитратов в природных и обработанных водах обычно определяют колориметрическими способами. Например, обычный анализ на нитрат проводят с использованием сульфофеноло-вого реактива. Интенсивность желтой окраски, появляющейся в результате реакции с нитратами, прямо пропорциональна их концентрации в пробе. Окрашенная проба с неизвестной концентрацией сравнивается со стандартными растворами с известными концентрациями (используют цилиндры Несслера, колориметр или спектрофотометр). Анализ на нитрит основан на появлении красно-пурпурной окраски, появляющейся в результате реакции нитрита с двумя органическими реагентами - сульфаниловой кислотой и 1-нафтиламингидрохлоридом. Проведение анализов на нитриты и нитраты в сточных водах намного труднее из-за высоких концентраций различных примесей, таких, как хлориды и органические вещества. В «Стандартных методах» описано пять методов анализа на нитраты. Каждый из них включает специальную предварительную очистку сточной воды для отделения взвеси, устранения окраски и удаления других ингибирующих веществ.[ ...]

Для многих растений, в частности хлебных злаков, некоторых трав, плодовых и ягодных культур, применение метода диагностики потребности их в удобрениях по анализу сока стеблей, черешков или листьев затруднено или вследствие недостаточной сочности их стеблей и листьев, или отсутствия черешков, а иногда также из-за интенсивной зеленой окраски сока, мешающей колориметрическим определениям. Для таких растений В. В. Церлинг предложила быстрый метод анализа при помощи микрореакций на срезах растений. Ею разработана полевая лаборатория, выпускаемая в виде портативного прибора под названием ОП-2 (Церлинг). Этот прибор позволяет очень быстро определять в растении содержание нитратов, минеральных фосфатов и калия. Анализы просты по технике выполнения.[ ...]

Каротин не растворяется в воде, плохо растворим в спирте, но хорошо - в других органических растворителях: ацетоне, бензине, эфире. Метод анализа основан на извлечении каротина из навески бензином, адсорбционном отделении других красящих веществ (хлорофилла и ксантофилла) и колориметрическом сравнении полученного окрашенного испытуемого раствора с одновременно приготовленным образцовым, имитирующим каротин раствором (двухромовокислого калия).[ ...]

Определение величины ХПК не требует специальных приборов, но занимает много времени. Были предложены различные ускоренные варианты метода, а также методы анализа очень мало загрязненных вод. В настоящей статье рассматривать подробности всех этих вариантов мы не будем, отметим лишь, что предлагаемые приемы (увеличение концентрации серной кислоты для ускорения реакции, переход на колориметрическое окончание взамен титриметрического, применяемого при определении малых величин ХПК) достигают цели. Однако при использовании сер-ной кислоты (больших концентраций) требуется периодическое сравнение получаемых результатов с результатами, которые дает стандартный метод, и введение необходимых поправочных коэффициентов. Разработаны и автоматические методы определения величин ХПК с различными окончаниями: потенциометрическим, газометрическим и др.[ ...]

Реакционная масса после конденсации фенолята натрия с моно-хлорацетатом натрия содержит 21-24% феноксиуксусной кислоты (ФК) и 2,50-4,0% фенола1. В описанных в литературе методах анализа в конденсированной массе обычно определяют непрореагировавший фенол колориметрически с 4-аминоантипирином2 и, исходя из полученных результатов, рассчитывают выход ФК. Указанный метод применим только для определения малых количеств фенола, поэтому на практике навеску реакционной массы многократно разбавляют дистиллированной водой с целью достижения концентрации фенола, приемлемой для проведения анализа.[ ...]

В том случае, когда надо определить количество отдельных сахаров или групп сахаров (гексозы и пентозы), отделив их от других редуцирующих веществ, применяют хроматографический метод. Анализ этим методом состоит из двух частей: 1) разделение редуцирующих веществ с помощью хроматографии на бумаге и 2) определение количества сахара, выделенного на бумажной хроматограмме, колориметрическим методом или эбу-лиостатическим потенциометрическим методом.[ ...]

Недостаточная чувствительность, особенно для малых концентраций, влияние разнообразных примесей (■белков, сульфатов и т. п.), длительность определений характерны для современных методов аналитического определения ПАВ в сточных водах. При анализе осадков сточных вод эти недостатки усугубляются, и определить концентрацию неионогенных ПАВ на активном иле в ряде случаев не удается. Колориметрическим методом с метиленовой синей не определяются анионные ПАВ с алкильными цепями длиной менее Сб-С7 и промежуточные продукты распада ПАВ. Чувствительность колориметрических методов определения неионогенных ПАВ также снижается с уменьшением длины оксиэтилированной цепи. Соединения с тремя-че-тырьмя молями окиси этилена и менее не дают окрашенных комплексов.[ ...]

Обращает также внимание, что данные по распаду в воде водоемов большинства неионогенных ПАВ (за исключением ОП) более или менее одинаковы, несмотря на имеющееся структурное различие, что, на наш взгляд, обусловливается несовершенством колориметрических методов анализа неионогенных ПАВ.[ ...]

На основе реакции Шиффа между солянокислым парарозанилином, формальдегидом и S02, с давних пор применяющейся в аналитической практике для обнаружения формальдегида и S02, в настоящее время разработаны и получили широкое распространение методы количественного колориметрического определения следов S02 при анализе воздуха. Чаще всего применяется способ Уэста и Геке , упоминаемый и в Рекомендации VDI № 2451. При этом авторы придерживаются указания Файгля относительно стабильности дисульфитмеркури-ионов 2 и в качестве жидкости для абсорбции S02 из пробы воздуха используют раствор тетрахлормеркурата натрия (из 2NaCl + HgCl3), в котором S02 остается стабильным даже в течение 24 ч.[ ...]

Возможность ликвидации окислов азота в окислительной и восстановительной среде была проверена в опытах по огневому обезвреживанию водных растворов азотной кислоты на стендовой циклонной установке МЭИ и на одной из опытно-промышленных установок. Анализ дымовых газов на окислы азота выполнялся колориметрическим методом с применением салициловой кислоты . Для оперативного контроля суммарного содержания окислов азота в дымовых газах использовался газоанализатор УГ-2. Все опыты на стендовой установке проводились с удельной нагрузкой 0,9 т/(м3 - ч), средний медианный диаметр капель составлял 180 мкм, коэффициент расхода воздуха варьировался в пределах от 0,81 до 1,11, температура отходящих газов изменялась от 860 до 1280° С. Концентрация азотной кислоты в растворе составляла около 5%.[ ...]

Молекулярные сита одни из немногих сорбентов, которые пригодны для эффективного! поглощения из воздуха микропримесей газообразных неорганических веществ. Цеолиты 5А и 13Х находят применение для концентрирования оксидов азота, а еще лучше использовать для этого сита 13Х, покрытые триэтаноламином . Оказалось, что цеолит 5А хорошо поглощает следовые количества сероводорода и диоксида серы [П1], причем этот адсорбент лучше, чем цеолит 13Х, сорбирует сероводород. Полного улавливания СО на этом сорбенте можно добиться и при комнатной температуре, применяя цеолиты типа Y, в которых катионы натрия замещены катионами серебра. Этот способ концентрирования оксида углерода с последующим газохроматографическим анализом десорбированных примесей уже нашел применение в практике промышленно-санитарного анализа . На цеолите ЗА можно избирательно концентрировать микропримеси метанола и аммиака для Последующего их определения хроматографическим или колориметрическим методом, а цеолит, содержащий ионы кадмия(II), является прекрасным адсорбентом для извлечения из воздуха очень малых количеств сероводорода .

Колориметрический метод

Колориметрия -- это метод количественного определения содержания веществ в растворах, либо визуально, либо с помощью приборов, таких как колориметры. Колориметрия может быть использована для количественного определения всех тех веществ, которые дают окрашенные растворы, или могут быть, с помощью химической реакции, дать окрашенное растворимое соединение. Колориметрические методы основываются на сравнении интенсивности окраски исследуемого раствора, изучаемого в пропущенном свете, с окраской эталонного раствора, содержащего строго определенное количество этого же окрашенного вещества, или же с дистиллированной водой. Любопытна история возникновения колориметрии и фотометрии. Ю. А. Золотов упоминает, что Роберт Бойль (так же, как и некоторые ученые до него) использовал экстракт дубильных орешков, чтобы различить железо и медь в растворе. Однако, по-видимому, именно Бойль впервые заметил, что чем больше железа содержится в растворе, тем более интенсивна окраска последнего. Это был первый шаг к колориметрии. А первым инструментом колориметрии стали колориметры типа колориметра Дюбоска (1870), которые использовались вплоть до недавнего времени. Более совершенные приборы -- спектрофотометры -- отличаются возможностью исследования оптической плотности в широком диапазоне длин волн видимого спектра, а также в ИК и УФ-диапазонах, с меньшей дискретностью длины волны (с использованием монохроматора). Фотоколориметры и спектрофотометры измеряют величину пропускания света при определенной длине волны света. Контроль (обычно дистиллированная вода или исходный материал без добавления реагентов) используется для калибровки устройства. Колориметрия широко применяется в аналитической химии, в том числе для гидрохимического анализа, в частности -- для количественного анализа содержания биогенных веществ в природных водах, для измерения pH, в медицине, а также в промышленности при контроле качества продукции.Џ

Определение содержание цинка дитизоновым методом

Метод основан на образовании окрашенного в красный цвет соединения цинка с дитизоном с дальнейшим извлечением дитизоната цинка в слой четыреххлористого углерода (при рН 4,5 - 4,8).

Чувствительность метода составляет (объем исследуемой воды 100 мл) - 5 мкг/л.

В условиях прописи метода можно определить цинк в количестве от 5 до 50 мкг/л. Если потребуется определить количество цинка, выходящее за указанные пределы, отбирают на определение соответственно большее или меньшее количество воды.

Определению цинка мешает содержание меди более 0,001 мг в исследуемой воде. При содержании меди более 0,001 мг ее связывают в комплекс добавлением серноватистокислого натрия из расчета на каждые 10 мкг меди в исследуемой воде 5 мл 20 %-ного раствора Na 2 S 2 O 3 . При содержании окисного железа более 0,05 мг и закисного 0,03 мг в пробе исследуемой воды необходимо воду предварительно разбавить очищенной дистиллированной водой и затем профильтровать через плотный фильтр, промытый горячей дистиллированной водой.

100 мл исследуемой воды, подкисленной при отборе (если исследуемая вода не была подкислена, ее подкисляют 2 - 3 каплями очищенной НСl (1: 1), помещают в делительную воронку вместимостью 150 - 200 мл. Добавляют 5 мл буферного раствора, перемешивают, приливают 1 мл 20 %-ного раствора серноватистокислого натрия и снова перемешивают. Добавляют из бюретки 4 мл 0,002 %-ного рабочего раствора дитизона в четыреххлористом углероде и энергично встряхивают в течение 2 мин. Окраска раствора дитизона в зависимости от содержания цинка изменяется от зеленой до красной. Ставят воронку вертикально в штатив и ожидают расслоения жидкостей. Экстракт дитизоната сливают в колориметрическую пробирку с притертой пробкой. К водному раствору в делительной воронке приливают вновь 2 мл раствора дитизона. Энергично встряхивают в течение 2 мин и после разделения жидкостей сливают слой дитизоната цинка в ту же пробирку.

Перемешивают и сравнивают со стандартной шкалой, приготовленной в тех же условиях.

Для приготовления стандартной шкалы отбирают 0,0; 0,5; 1,0; 2,0; 3,0; 4,0 и 5,0 мл рабочего стандартного раствора Zn (1 мл раствора содержит 1 мкг Zn 2+), доводят объем дистиллированной водой до 100 мл и обрабатывают так же, как исследуемую воду. Образцы шкалы соответственно будут содержать 0,0 - 0,5 - 1,0 - 2,0 - 3,0 - 4,0 - 5,0 мкг Zn 2+ .

Шкала устойчива в течение трех суток при хранении в темном месте.

Если концентрация цинка в исследуемой воде не превышает 50 мкг/л, весь цинк из исследуемой воды обычно переходит в дитизонат при первом встряхивании. Цвет раствора дитизона при повторном экстрагировании остается зеленым. Если цвет раствора дитизона будет иметь иную окраску, то это значит, что в воде содержится цинка более 50 мкг/л. В этом случае определение повторяют, отбирая для анализа 50 - 25 мл исследуемой воды. При этом количество прибавляемого буферного раствора и серноватистокислого натрия остается прежним. Если необходимо брать еще меньшее количество исследуемой воды, ее нужно разбавлять очищенной дистиллированной водой до объема 25 мл. При малых концентрациях цинка в исследуемой воде (0,5 - 1,0 мкг в исследуемой воде) экстракцию следует производить более разбавленным раствором дитизона (0,001 %). При первой экстракции добавляют 3 мл 0,001 %-ного раствора дитизона, второй раз 1 мл.

Полученные экстракты сливают вместе в пробирку с притертой пробкой и колориметрируют. Стандартную шкалу (0,5 - 1,0 мкг Zn 2+) готовят в тех же условиях.



Copyright © 2024 Медицинский портал - Здравник.