Критическая температура. Критическое состояние вещества Критической температурой называется

Выше было объяснено, что для превращения пара в жидкость нужно повышать давление и понижать температуру. Таким путем английскому ученому М. Фарадею удалось перевести в жидкое состояние многие вещества, которые до этого были известны только в газообразном состоянии. Однако некоторые газы долго не удавалось перевести в жидкое состояние даже при весьма больших давлениях. Теоретическое объяснение этих неудач дал русский ученый Д. И. Менделеев.

Границей, отделяющей жидкость от окружающей среды, является свободная поверхность жидйости. Наличие этой поверхности дает нам возможность точно указать, где находится жидкая фаза вещества и где газообразная. Такое резкое различие между жидкостью и ее паром в основном объясняется тем, что, вообще говоря, плотность жидкости во много раз больше, чем у ее пара. Однако если нагревать жидкость в герметически закрытом сосуде, то вследствие расширения жидкости ее плотность будет уменьшаться, а плотность паров над ее поверхностью будет возрастать. Это означает, что различие между жидкостью и ее насыщающим паром в процессе такого нагревания сглаживается и при достаточно высокой температуре должно исчезнуть совсем.

В 1861 г. Менделеев установил, что для каждой жидкости должна существовать такая температура, при которой исчезает всякое различие между жидкостью и ее паром. Менделеев назвал ее «температурой абсолютного кипения». Экспериментально исследовал процесс превращения пара в жидкость и обратно при различных давлениях английский ученый Т. Эндрюс. Он показал, что такая температура для каждой жидкости действительно существует, и ввел для нее новый термин: критическая температура, который и используется в настоящее время.

Критической температурой вещества называется такая температура, при которой плотность жидкости и плотность ее насыщающего пара становятся одинаковыми. График изменения плотности воды и ее насыщающего пара в зависимости от температуры показан на рис. 8.8; из рисунка видно, что для воды критическая температура соответствует 374 °С. Поскольку не только плотность, но и давление насыщающего пара однозначно определяется его температурой, можно построить график зависимости давления от температуры для насыщающего пара (рис. 8.9).

Давление насыщающего пара какого-либо вещества при его критической температуре называется критическим давлением Оно является наибольшим возможным давлением насыщающих паров этого вещества. Для воды Па. Из рис. 7.2 видно, что при критической температуре удельная теплота парообразования воды равна нулю. Это относится и к другим

жидкостям. Следовательно, при критической температуре теряется всякое различие между жидкостью и ее паром, а граница между ними исчезает. Это означает, что при температуре выше вещество может существовать только в одном состоянии, которое называют газообразным, и в этом случае никаким увеличением давления превратить его в жидкость нельзя.

Если вещество находится при критической температуре и критическом давлении, то его состояние называют критическим состоянием. Объем, занимаемый веществом при критическом состоянии, называется критическим объемом .

Он является наибольшим объемом, который может занимать имеющаяся масса вещества в жидком состоянии. В таблицах обычно даются значения критического объема для одного моля вещества. Значения (для одного моля) называются критическими параметрами вещества (табл. 8.3).

Таблица 8.3. Критические параметры некоторых чистых веществ

Наблюдать переход вещества через критическое состояние можно при нагревании эфира в ампуле (рис. 8.10, а - г). При изготовлении ампулы в нее вводится такая масса эфира, объем которой в критическом состоянии равен внутреннему объему ампулы. При охлаждении, когда температура становится ниже критической, эфир переходит в жидкое состояние (рис. 8.10, д, е).

Теперь видно, что принципиальной разницы между газом и паром нет. Обычно газом называют вещество в газообразном

состоянии, когда его температура выше критической. Паром также называют вещество в газообразном состоянии, но когда его температура ниже критической. Следовательно, пар можно перевести в жидкость одним только увеличением давления, а газ - нельзя.

Важное значение уравнения Ван-дер-Ваальса заключается в том, что оно предсказывает особое состояние вещества - критическое. Если рассчитать изотермы Ван-дер-Ваальса для различных температур, то получим, что с повышением температуры кривые будут смещаться вверх, а длина S -образного участка будет уменьшаться и при некоторой температуре станет равной нулю, т.е. участок стянется в точку. Эта точка называется критической точкой, а параметры состояния p кр , V кр , T кр , соответствующие ей, называются критическими.

Рассмотрим семейство опытных изотерм на диаграмме p-V (рис. 11.3), для которых S -образный участок изотермы (11.4) представляет собой прямую линию. Изотерма, проходящая через критическую точку, называется критической. Концы прямолинейных участков семейства изотерм образуют колоколообразную кривую. Колоколообразная кривая и критическая изотерма делят диаграмму p-V на четыре области: жидкость, газ, пар и двухфазную область - жидкость и насыщенный пар (см.рис.11.3).

Если изотермически сжимать газ при температуре, меньшей T кр (изотерма для T = T 1 ), то газ перейдет в двухфазное состояние и затем в жидкое. Газообразное состояние при T < T кр часто называют паром. Легко видеть, что, если T > T кр , то, сжимая газ изотермически, его нельзя превратить в жидкость (изотерма для T = T 2 ). Это обстоятельство позволило понять, что любой газ можно превратить в жидкость, лишь охладив его до температуры ниже критической и сжимая его. Это предположение впервые высказал Д.И. Менделеев, и он же впервые ввел понятие критической температуры, проводя исследования коэффициента поверхностного натяжения. Учитывая вышесказанное, ученым удалось сжижить все известные газы.

При критическом состоянии различие в плотности жидкости и насыщенного пара пропадает. Критическое состояние представляет собой смесь частичек жидкости и пара, которые непрерывно распадаются, превращаясь друг в друга. Вещество при подходе к критической точке мутнеет, так как свет сильно рассеивается на этих неоднородностях среды.

Конец работы -

Эта тема принадлежит разделу:

Несколько вводных замечаний о предмете физики

Криволинейное движение ускорение при криволинейном движении тангенциальное и нормальное.. кинематика вращательного.. механика твердого тела поступательное движение твердого..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Несколько вводных замечаний о предмете физики
Мир, окружающий нас материален: он состоит из вечно существующей и непрерывно движущейся материи. Материей в широком смысле этого слова называется все, что реально существует в природе и м

Механика
Простейшим видом движения материи является механическое движение. ОПРЕДЕЛЕНИЕ: механическое движение – изменение взаимного расположения тел или их частей относительно друг друга в простран

Кинематика движения материальной точки. Характеристики движения
Положение материальной точки M в пространстве в данный момент времени может быть задано радиус-вектором (см. рис

Вектор скорости. Средняя и мгновенная скорость
Движения различных тел различаются тем, что тела за одинаковые промежутки (равные) времени проходят различные по

Путь при неравномерном движении
За малый промежуток времени Dt перемещение графически изображается в виде прямоугольника, высота которого равна

Ускорение при криволинейном движении (тангенциальное и нормальное ускорение)
Если траектория движения материальной точки представляет собой кривую линию, то такое движение мы будем называть криволинейным. При таком движении

Угловая скорость
ОПРЕДЕЛЕНИЕ: Вращательным движением будем называть такое движение, при котором все точки абсолютно твердого тела описывают окружности, центры которых лежат на одной прямой, называемой осью в

Угловое ускорение
Вектор угловой скорости может изменяться как за счет изменения скорости вращения тела вокруг оси (в этом случае

Связь между линейной и угловой скоростью
Пусть за малый промежуток времени Dt тело повернулось на угол Dj (рис. 2.17). Точка, находящаяся на расстоянии R от оси, проходит при этом путь DS = R×Dj. По определению

Динамика
Раздел механики, исследующий законы и причины, вызывающие движение тел, т.е. изучает движение материальных тел под действием приложенных к ним сил. В основе классической (ньютоновской) мех

закон Ньютона
ОПРЕДЕЛЕНИЕ: Ускорение всякого тела прямо пропорционально действующей на него силе и обратно пропорционально массе тела:

закон Ньютона
Всякое действие тел друг на друга носит характер взаимодействия: если тело M1 действует на тело M2 с некоторой силой f12, то и тело M2 в свою очер

Импульс. Закон сохранения импульса
В механической системе, состоящей из нескольких тел, существуют как силы взаимодействия между телами системы, которые называются внутренними, так и силы взаимодействия этих тел с телами, не входящи

Работа и энергия
Пусть тело, на которое действует сила, проходит, двигаясь по некоторой траектории путь S. При этом сила либо из

Мощность
На практике имеет значение не только величина совершенной работы, но и время, в течение которого она совершается. Из всех механизмов наиболее выгодными являются те, которые за меньшее время выполня

Энергия
Из опыта известно, что тела часто оказываются в состоянии совершать работу над другими телами. ОПРЕДЕЛЕНИЕ: Физическая величина, характеризующая способность тела или системы тел совершать

Кинетическая энергия тела
Рассмотрим простейшую систему, состоящую из одной частицы (материальной точки). Напишем уравнение движения частицы

Потенциальное поле сил. Силы консервативные и неконсервативные
Если частица (тело) в каждой точке пространства подвержена воздействию других тел, то говорят, что эта частица (тело) находится в поле сил. Пример: 1. Частица вблизи повер

Потенциальная энергия тела в поле сил тяжести (в поле тяготения Земли)
Поле тяготения Земли есть силовое поле, поэтому любое движение тела в силовом поле сопровождается совершением работы силами этого поля. Для определения потенциальной энергии тела, находяще

Потенциальная энергия в гравитационном поле (в поле всемирного тяготения)
Установленный Ньютоном закон всемирного тяготения гласит: ОПРЕДЕЛЕНИЕ: Гравитационная сила или сила тяготения – это сила, с которой две материальные точки притягивают друг др

Потенциальная энергия упруго деформированного тела
Потенциальной энергией может обладать не только система взаимодействующих тел, но и отдельно взятое упруго деформированное тело (например, сжатая пружина, растянутый стержень и т.п.). В этом случае

Закон сохранения энергии
Без нарушения общности рассмотрим систему, состоящую из двух частиц массами m1 и m2. Пусть частицы взаимодействуют друг с другом с силами

Поступательное движение твердого тела
ОПРЕДЕЛЕНИЕ: Абсолютно твердым телом будем называть такое тело, деформациями которого в условиях рассматриваемой задачи можно пренебречь. или Абсолютно твердым телом

Вращательное движение твердого тела
ОПРЕДЕЛЕНИЕ: Вращательным движением твердого тела будем называть такое движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и ой же прямой, называемой

Момент импульса тела
Для описания вращательного движения потребуется ещё одна величина, называемая моментом импульса. Снача

Закон сохранения момента импульса
ФОРМУЛИРОВКА: Момент импульса замкнутой системы материальных точек остается постоянным. Отметим, что момент импульса остается постоянным и для системы, подвергающейся внешним воздействиям,

Основное уравнение динамики вращательного движения
Рассмотрим систему материальных точек, каждая из которых может перемещаться, оставаясь в одной из плоскостей, проходящих через ось Z (рис. 4.15). Все плоскости могут вращаться вокруг оси Z с углово

Кинетическая энергия вращающегося твердого тела
1. Рассмотрим вращение тела вокруг неподвижной оси Z. Разобьем все тело на множество элементарных масс m

Работа внешних сил при вращательном движении твердого тела
Найдем работу, которую совершают силы при вращении тела вокруг неподвижной оси Z. Пусть на массу действ

Линии и трубки тока
Гидродинамика изучает движение жидкостей, однако ее законы примени- мы и к движению газов. При стационарном течении жидкости скорость ее частиц в каждой точке пространства есть величина, независима

Уравнение Бернулли
Будем рассматривать идеальную несжимаемую жидкость, в которой внутреннее трение (вязкость) отсутствует. Выделим

Силы внутреннего трения
Реальной жидкости присуща вязкость, которая проявляется в том, что любое движение жидкости и газа самопроизвольн

Ламинарное и турбулентное течения
При достаточно малой скорости движения жидкости наблюдается слоистое или ламинарное течение, когда слои жидкости скользят относительно друг друга не перемешиваясь. При ламинарном т

Течение жидкости в круглой трубе
При движении жидкости в круглой трубе ее скорость равна нулю у стенок трубы и максимальна на оси трубы. Полагая

Движение тел в жидкостях и газах
При движении симметричных тел в жидкостях и газах возникает сила лобового сопротивления, направленная противоположно скорости движения тела. При ламинарном обтекании шара линии ток

Законы Кеплера
К началу 17 столетия большинство ученых окончательно убедилось в справедливости гелиоцентрической системы мира. Однако ученым того времени не были ясны ни законы движения планет, ни причины, опреде

Опыт Кавендиша
Первой успешной попыткой определения «g» были измерения, осуществленные Кавендишем (1798г.), который применил дл

Напряженность гравитационного поля. Потенциал гравитационного поля
Гравитационное взаимодействие осуществляется через гравитационное поле. Это поле проявляет себя в том, помещенное в него другое тело оказывается под действием силы. Об «интенсивности» гравитационно

Принцип относительности
В разд. 2.1. для механических систем был сформулирован следующий принцип относительности: во всех инерциальных системах отсчета все законы механики одинаковы. Никакими (меха

Постулаты специальной (частной) теории относительности. Преобразования Лоренца
Эйнштейн сформулировал два постулата, лежащие в основе специальной теории относительности: 1. Физические явления во всех инерциальных системах отсчета протекают одинаково. Никакими

Следствия из преобразований Лоренца
Самым неожиданным следствием теории относительности является зависимость времени от системы отсчета. Длительность событий в разных системах отсчета. Пусть в некоторой точк

Интервал между событиями
В теории относительности вводят понятие события, которое определяется местом, где оно произошло, и временем, когда оно произошло. Событие можно изобразить точкой в воображаемом четырехмерном

Уравнение гармонического колебательного движения
Пусть на некоторое тело массы “m” действует квазиупругая сила, под действием которой тело приобретает ускорени

Графическое изображение гармонических колебаний. Векторная диаграмма
Сложение нескольких колебаний одинакового направления (или, что то же самое, сложение нескольких гармонических функций) значительно облегчается и становится наглядным, если изображать колебания гра

Скорость, ускорение и энергия колеблющегося тела
Вернемся к формулам для смещения x, скорости v и ускорения a гармонического колебательного процесса. Пусть имеем тело массы «m», которое совершает под действием квазиу

Гармонический осциллятор
Систему, описываемую уравнением, где

Физический маятник
ОПРЕДЕЛЕНИЕ: Физическим маятником будем называть твердое тело, способное совершать колебания вокруг непо

Затухающие колебания
При выводе уравнения гармонических колебаний считалось, что колеблющаяся точка находится под действием только квазиупругой силы. Во всякой реальной колебательной системе всегда имеются силы сопроти

Вынужденные колебания. Резонанс
Для того чтобы система совершала незатухающие колебания, необходимо извне восполнять потери энергии колебаний на трение. Для того, чтобы энергия колебаний системы не убывала обычно вводят силу, пер

Предмет и методы молекулярной физики
Молекулярная физика представляет собой раздел физики, изучающий строение и свойства вещества, исходя и так называемых молекулярно-кинетических представлений. Согласно этим представлениям любое тело

Термодинамическая система. Параметры состояния системы. Равновесное и неравновесное состояние
ОПРЕДЕЛЕНИЕ: Термодинамической системой называется совокупность тел, обменивающихся энергией, как друг с другом, так и с окружающими телами. Примером системы может служить жидкость

Идеальный газ. Параметры состояния идеального газа
ОПРЕДЕЛЕНИЕ: Идеальным газом называется газ, при рассмотрении свойств которого соблюдаются следующие условия: а) соударения молекул такого газа происходят как соударения упругих шаров, размеры

Газовые законы
Если разрешить уравнение состояния идеального газа относительно какого-либо из параметров, н

Уравнение состояния идеального газа (уравнение Менделеева - Клапейрона)
До этого рассматривались газовые процессы, при которых один из параметров состояния газа оставался неизменным,

Физический смысл универсальной газовой постоянной
Универсальная газовая постоянная имеет размерность работы, отнесенной к 1 молю и температуре 1°К.

Основное уравнение кинетической теории газов
Если в предыдущем разделе применялся термодинамический метод исследования, то в этом разделе будет использован статистический метод исследования молекулярных процессов. На основании исследования со

Барометрическая формула. Распределение Больцмана
Давно известно, что давление газа над поверхностью Земли уменьшается с высотой. Атмосферное давление на некотор

Максвелловское распределение молекул по скоростям
В результате столкновений молекулы обмениваются скоростями, а в случае тройных и более сложных столкновений молекула может иметь временно очень большие и очень малые скорости. Хаотичное движение пр

Явления переноса. Длина свободного пробега молекул
В предыдущих разделах мы рассматривали свойства тел, находящихся в тепловом равновесии. Данный раздел посвящен процессам, с помощью которых происходит установление состояния равновесия. Такие проце

Явление диффузии
Диффузией называют процесс взаимного проникновения молекул соприкасающихся веществ, обусловленный тепловым движением. Этот процесс наблюдается в газах, жидкостях и твердых т

Явление теплопроводности и вязкости
Явление теплопроводности вещества определяет многие очень важные технические процессы и широко применяется в разнообразных расчетах. Эмпирическое уравнение теплопроводности было получено французски

Термодинамика
Термодинамика изучает физические явления с точки зрения тех превращений энергии, которыми эти явления сопровождаются. Первоначально термодинамика возникла как наука о взаимном превращении теплоты в

Внутренняя энергия идеального газа
Важной величиной в термодинамике является внутренняя энергия тела. Любое тело кроме механической энергии может обладать запасом внутренней энергии, которая связана с механическим движением атомов и

Работа и теплота. Первое начало термодинамики
Внутренняя энергия газа (и другой термодинамической системы) может изменяться в основном за счет двух процессов: совершения над газом работы

Работа газовых изопроцессов
Пусть газ заключен в цилиндрический сосуд, закрытый плотно пригнанным и легко скользящим поршнем (рис.10.3). Пр

Молекулярно-кинетическая теория теплоемкостей
Теплоемкостью тела C называют физическую величину, численно равную количеству тепла, которое необходимо сообщить телу для нагревания его на один градус. Если сообщить телу к

Адиабатический процесс
Наряду с изопроцессами существует адиабатический процесс, широко распространенный в природе. Адиабатическим процессом называют процесс, протекающий без теплообмена с внеш

Круговые обратимые процессы. Цикл Карно
Механические процессы обладают замечательным свойством обратимости. Например, брошенный камень, описав некоторую траекторию, упал на землю. Если его бросить обратно с той же скоростью, то он опишет

Понятие об энтропии. Энтропия идеального газа
Для цикла Карно из формул (10.17) и (10.21) легко получить соотношение Q1 /T1 - Q2 /T2 = 0. (10.22) Величину Q/T называют привед

Второе начало термодинамики
Понятие энтропии помогло строго математически сформулировать закономерности, позволяющие определить направление тепловых процессов. Огромная совокупность опытных фактов показывает, что для

Статистическое толкование второго начала термодинамики
Состояние макроскопического тела (т.е. тела, образованного огромным числом молекул) может быть задано с помощью объема, давления и температуры. Данное макроскопическое состояние газа с определенным

Уравнение Ван-дер-Ваальса
Поведение реальных газов при их малых плотностях хорошо описывается уравнением Клапейрона:

Эффект Джоуля-Томсона
В реальном газе между молекулами действуют силы притяжения и отталкивания. Силы притяжения обусловлены дипольным взаимодействием молекул. Некоторые молекулы могут представлять собой постоянные дипо

Критическая температура

Critical temperature

Температура, выше которой, газ не может быть превращен в жидкость ни при каком давлении. Выше критической температуры вещество не может находиться в двухфазном состоянии и процессы конденсации и испарения становятся невозможными. Давление, соответствующее критической точке, называется критическим давлением, а объем – критическим объемом.

Применительно к нефтяным газам, состоящим из смеси углеводородов с различными критическими температурами и давлениями, пользуются псевдокритическими давлением и температурой, представляющими собой суммы произведений относительного содержания данного углеводорода в смеси (в долях единицы, если задано объемное содержание, или в молях) и значений критических давлений и температур этих же углеводородов.

Отношение давления (температуры), под которым находится смесь газов, к псевдо-критическому давлению (температуре) называется приведенным псевдокритическим давлением (температурой), зная которые можно найти значения коэффициентов сверхсжимаемости реальных газов.


Краткий электронный справочник по основным нефтегазовым терминам с системой перекрестных ссылок. - М.: Российский государственный университет нефти и газа им. И. М. Губкина . М.А. Мохов, Л.В. Игревский, Е.С. Новик . 2004 .

Смотреть что такое "Критическая температура" в других словарях:

    Критическая температура - это предельно допустимая температура электроизоляционных материалов, использованных для изготовления элементов светильников, выше которой происходит их оплавление, воспламенение и т.д. Источник: НПБ 249 97: Светильники. Требования пожарной… … Словарь-справочник терминов нормативно-технической документации

    Критическая температура - фазового перехода такая температура, при которой плотность и давление насыщенного пара становится максимальными, а плотность жидкости, находящейся в динамическом равновесии с паром, становится минимальной. Критическая температура смешения… … Википедия

    КРИТИЧЕСКАЯ ТЕМПЕРАТУРА - 1) теып ра в ва в его критическом состоянии. Для индивидуальных в в К. т. определяется как темп pa, при к рой исчезают различия в физ. св вах между жидкостью и паром, находящимися в равновесии. При К. т. плотности насыщенного пара и жидкости… … Физическая энциклопедия

    КРИТИЧЕСКАЯ ТЕМПЕРАТУРА - 1) предельная Температура равновесного сосуществования двух фаз (жидкости и ее пара), выше которой эти фазы неразличимы (см. Критическое состояние).2) Температура, при которой в жидких смесях с ограниченно растворимыми компонентами наступает их… … Большой Энциклопедический словарь

    КРИТИЧЕСКАЯ ТЕМПЕРАТУРА - а) температура вещества в его (см.), определяется как температура равновесного сосуществования двух фаз (жидкости и её пара), выше которой может существовать лишь одна фаза. Сжижение газов возможно только при охлаждении их ниже критической точки; … Большая политехническая энциклопедия

    критическая температура - Температура, при которой происходит разрушение сгораемых материалов (плавление, обугливание, выделение дыма, тление и т.д.) [ГОСТ 17677 82] Тематики лампы, светильники, приборы и комплексы световые … Справочник технического переводчика - Critical temperature Критическая температура. Температура, выше которой паровая фаза не может быть сконденсирована в жидкость при увеличении давления. (

Как было отмечено выше, в критическом состоянии нет различия между жидкостью и газом, нет границы раздела между этими фазами. На диаграмме Ван-дер-Ваальса критическое состояние вещества изображается точкой перегиба К. Критическое состояние можно описать при помощи критических параметров состояния : критической температуры Т к, критического объёма V к и критического давления Р к. Критические параметры можно выразить через поправки на давление и объём. Поскольку критическая точка – точка перегиба изотермы Ван-дер-Ваальса, то в этой точке первая и вторая производные от давления по объёму должны быть равны нулю. Поскольку состояние реального газа описывается уравнением Ван-дер-Ваальса, то первая производная определяется формулой:

Вторая производная: .

Приведём к общему знаменателю обе формулы и их числители приравняем нулю, получим: .

Преобразуем эту систему к уравнению: . Поделим обе части этого уравнения на и получим:

На практике обычно . Для выражения критической температуры через поправки на объём и давление, воспользуемся формулой (6.5)и получим . Подставим в эту формулу вместо критического объёма правую часть равенства (6.6) и получим:

Следует обратить внимание на то, что критическая температура вещества не равна температуре кипения. Так температура кипения воды 373,15 К, а критическая температура 647,25 К. Ниже приведены критические температуры некоторых веществ.

КРИТИЧЕСКОЕ СОСТОЯНИЕ ВЕЩЕСТВА, состояние вещества, возникающее в критической точке и её окрестности, в котором сосуществующие в равновесии фазы по своим физическим свойствам становятся неотличимыми друг от друга. Для критического состояния вещества характерно возникновение критических явлений, а также изменение рода фазового перехода с 1-го на 2-й, сопровождающееся изменением характера кинетики этого перехода. В области состояний вещества вне пределов критического состояния вещества образование более упорядоченной фазы на фоне менее упорядоченной происходит обычно по механизму нуклеации, или зародышеобразования, тогда как в области критического состояния вещества установление ближнего порядка в менее упорядоченной фазе реализуется посредством флуктуационного механизма.

Наиболее простым примером критического состояния вещества является состояние однокомпонентной системы вблизи точки окончания фазовой границы газ - жидкость на диаграмме состояния давление (р) - температура (Г). Критическое состояния вещества имеет место при одновременном выполнении двух условий: р ≥ р кр, Т ≥ Т кр, а при значительном превышении критических значений р кр и Т кр принято говорить о сверхкритическом состоянии вещества. При критическом состоянии вещества полностью отсутствуют физические различия между жидкостью и газом, в том числе становятся равными друг другу характеризующие эти фазы плотности ρ ж и ρ г. Наличие критического состояния вещества позволяет осуществить переход между этими фазами непрерывным образом, избежав обычного для фазового перехода 1-го рода газ - жидкость положительного или отрицательного (в зависимости от направления перехода) скачка плотности Δρ = ρ ж - ρ г, поглощения или выделения (в зависимости от направления перехода) теплоты фазового перехода, а также появления межфазного поверхностного натяжения.

Отсутствие теплоты перехода при использовании критического состояния вещества связано с плавным изменением одной из термодинамических функций состояния - энтропии, характеризующей степень упорядоченности (в данном случае так называемого ближнего порядка) жидкой фазы по сравнению с газообразной. Для фазовой границы жидкость - твёрдое тело на диаграмме (р, Т) критическая точка (и, следовательно, критическое состояние вещества) отсутствует, поскольку характеризующий твёрдое тело так называемый дальний порядок в принципе не может быть непрерывным образом получен из характеризующего жидкость ближнего порядка.

В многокомпонентных системах возникновение критического состояния вещества становится возможным на линиях или поверхностях, соединяющих критические точки отдельных компонентов.

Лит. смотри при ст. Критические явления.



Copyright © 2024 Медицинский портал - Здравник.