Образование и отдача тепла. Тепловой баланс и регуляция температуры тела Наибольшая доля тепла в организме образуется в

Совокупность физиологических механизмов, осуществляющих регулирование температуры тела, называется физиологической системой терморегуляции.

Образование тепла в организме. Тепло в организме образуется в результате окисления пищевых веществ в процессе распада белков, жиров и углеводов. Энергия, которая до этого находилась в них в скрытом состоянии, освобождается, расходуется и в конечном счете отдается организмом в виде тепла.
Местом, где главным образом происходит образование тепла, являются мышцы. Этот процесс идет даже тогда, когда человек находится в полном покое. Незначительные мышечные движения уже способствуют большему образованию тепла, а при ходьбе количество его повышается на 60-80 %. При мышечной работе образование тепла увеличивается в 4-5 раз. Кроме скелетных мышц, теплообразование происходит в желудке, кишках, печени, почках и других органах.
Образование тепла в организме сопровождается его отдачей. Организм теряет столько тепла, сколько в нем образуется, в противном случае человек погиб бы в течение нескольких часов.
Эти сложные процессы регуляции образования и отдачи тепла организмом называются терморегуляцией и совершаются рядом приспособительных механизмов, к рассмотрению которых мы и перейдем.
Регуляция теплообразования и теплоотдачи. Температура тела остается постоянной благодаря тому, что в организме регулируется как образование, так и отдача тепла.
Тепло расходуется организмом разными путями. Основным путем теплоотдачи является потеря тепла проведением, т. е. нагреванием окружающего воздуха и излучением; кроме того, тепло расходуется с выдыхаемым воздухом, на испарение пота и т. д.
Следовательно, температура тела человека сохраняется постоянной благодаря тому, что регулируется, с одной стороны, интенсивность окислительных процессов, т. е. образования тепла, а с другой, - интенсивность и объем теплоотдачи. Эти два способа регуляции получили название химической и физической терморегуляции.
Под химической терморегуляцией понимают изменение интенсивности обмена веществ под воздействием окружающей среды. Существует определенная зависимость между температурой воздуха и обменом веществ в организме. Так, при понижении температуры воздуха образование тепла в организме усиливается.
Наибольшая часть тепла образуется в мышцах. На холоде происходит дрожание мышц. При понижении температуры окружающей среды раздражаются кожные рецепторы, воспринимающие температурные раздражения: в них возникает возбуждение, которое идет в ЦНС и оттуда к мышцам, вызывая их сокращения. Таким образом, дрожь и озноб, которые мы испытываем в холодное время года или в холодном помещении, являются рефлекторными актами, способствующими усилению обмена веществ, а следовательно, увеличению образования тепла. Усиление обмена веществ происходит под влиянием холода, даже когда отсутствуют мышечные движения.
Значительное количество тепла образуется и в органах брюшной полости - в печени и почках. Это можно проследить, если измерять температуру крови, притекающей к печени и оттекающей от нее. Оказывается, что температура оттекающей крови выше температуры притекающей. Следовательно, кровь нагрелась при протекании через печень.
При повышении температуры воздуха теплообразование в организме уменьшается.
Физическая терморегуляция. При повышении или понижении температуры окружающей среды происходит не только изменение окислительных процессов, т. е. теплообразования, но и отдачи тепла, причем при понижении температуры отдача тепла уменьшается, а при повышении - увеличивается.
Тепло отдается организмом в основном путем проведения и излучения, и только некоторая часть - другими путями. Так, отдача тепла путем проведения составляет 31% всего образовавшегося в организме тепла, путем излучения - 44 %, при испарении воды кожей теряется 10 %, при испарении воды легкими - 12 %, на нагревание вдыхаемого воздуха и выделенных мочи и кала расходуется 3 % тепла.
Путем проведения тело теряет тепло на нагревание окружающего воздуха и предметов, с которыми соприкасается. Другой путь теплоотдачи - излучение тепла. При этом происходит
нагревание предметов, находящихся на некотором расстоянии от тела.
Как же происходит изменение теплоотдачи? Большую роль в теплоотдаче играет расширение и сужение сосудов кожи. Все знают, что на холодном, морозном воздухе кожа человека бледнеет, а когда воздух разогрет, раскален - краснеет.
Изменение цвета кожи обусловлено тем, что под влиянием холода кровеносные сосуды, в первую очередь артериолы, сужаются. В результате приток крови к поверхности тела уменьшается, а следовательно, снижается и теплоотдача путем проведения и излучения.
Под влиянием же тепла сосуды кожи расширяются, кровь обильно притекает к поверхности тела, что способствует усилению проведения и излучения тепла. Таким путем тепло отдается в окружающую среду только тогда, когда температура воздуха ниже температуры тела. Чем меньше разница между температурой кожи и температурой воздуха, тем меньше тепла отдается в окружающую среду. В этом случае значительную роль играет потоотделение. При испарении 1 г пота теряется 0,58 ккал. Так как потоотделение и испарение происходит непрерывно при любой температуре, то количество калорий, которое при этом теряет человек, зависит от интенсивности потоотделения. При средней температуре за день человек теряет около 800 мл пота. При потере такого количества пота расходуется 450- 500 ккал. При повышении температуры выделение пота увеличивается и иногда доходит до нескольких литров.
Наибольшее количество пота выделяется в тех случаях, когда температура воздуха равна или выше температуры тела. В этих условиях передача тепла путем проведения излучения невозможна, и поэтому оно расходуется в основном при помощи потоотделения.
В жарких странах или жарких помещениях, где температура воздуха равна 37°С или несколько выше, тепло отдается только испарением. При этом у человека выделяются в течение дня до 4,5 л пота, что обеспечивает отдачу 2400-2800 ккал.
Большое количество пота теряется при физической работе, причем происходит это при любой температуре. Подсчитано, что при особо тяжелых работах человек теряет в день до 9 л пота и, таким образом, путем испарения отдает до 5000 ккал.
Потоотделение в значительной степени зависит от насыщения воздуха водяными парами. При равных температурных условиях большее испарение пота, а следовательно, и большая потеря тепла обеспечиваются в условиях низкого содержания водяных паров в воздухе. Поэтому жара легко переносится в тех местах, где воздух более сухой.
Испарению пота препятствует непроницаемая одежда (резиновая, противоипритный костюм и т. п.). Человек в такой одежде потеет даже на морозе, так как вокруг него создается постоянный слой воздуха, который не обновляется ввиду отсутствия вентиляции. Этот слой воздуха насыщается парами, что препятствует дальнейшему испарению пота. Поэтому длительное пребывание в этих костюмах невозможно, так как вызывает повышение температуры тела.
В жарких странах, горячих цехах, при длительных походах человек теряет большое количество пота. Появляется жажда, но вода не утоляет ее; наоборот, чем больше воды пьет человек, тем он больше потеет и тем сильнее становится жажда.
Одновременно с потом теряются соли, поэтому возникает необходимость пополнить не только потерю воды, но и потерю солей. С этой целью к питьевой воде добавляют 0,5 % поваренной соли. Такую немного подсоленную воду дают в горячих цехах, при длительных походах и т. п. Она утоляет жажду и улучшает самочувствие.
Некоторую роль в теплоотдаче играет дыхание. Тепло расходуется на испарение воды легкими и отчасти на согревание вдыхаемого воздуха. На холоде происходит рефлекторное замедление дыхания, а при высокой температуре дыхание учащается, наступает так называемая тепловая одышка.
Для лучшей отдачи тепла большое значение имеет циркуляция воздуха. Когда воздух находится в движении, то около тела не создается постоянного слоя нагретого и насыщенного парами воздуха. В этом заключается значение вентиляторов, обмахивания и т. д. Одежда же создает неподвижный слой воздуха и тем самым затрудняет теплоотдачу.
Отдаче тепла препятствует подкожный жир. Чем толще слой жира, тем хуже она осуществляется. Поэтому люди с толстым жировым слоем в подкожной клетчатке легче переносят холод, чем худые.
Температура тела человека постоянна. Она измеряется в подмышечной впадине или в прямой кишке (у грудных детей). Средняя температура в подмышечной впадине колеблется в пределах 36,5-36,9°С, в прямой кишке - несколько выше (37,2-37,5 С). Температура внутренних органов выше, чем средняя температура тела, например температура печени равна 38-38,5°С. Температура тела человека колеблется в течение суток. Наиболее низкой она бывает в 3-4 ч
ночи, затем постепенно возрастает, доходя до наивысшей точки в 16 ч, и вновь начинает снижаться. Колебания температуры происходят в пределах 0,5°С от средней величины.
Температура тела может резко повыситься при мышечной работе и дойти до 38-39°С или даже до 40°С. По прекращении же работы она быстро падает и доходит до нормальной величины.
Постоянство температуры тела поддерживается уже описанными двумя механизмами: химической и физической терморегуляцией. Однако возможности человеческого организма ограничены, и при некоторых условиях эти механизмы оказываются недостаточными. Тогда нарушается постоянство температуры и наблюдается либо ее повышение, либо понижение. Повышение температуры выше нормы называется лихорадкой. Лихорадка может наступить потому, что увеличивается образование тепла при отсутствии изменений в теплоотдаче, или, наоборот, теплообразование остается неизменным, а теплоотдача уменьшается.
Понижение температуры до 32-33°С, как и увеличение ее свыше 42-43°С, приводит к смерти.
Центры терморегуляции. Центр терморегуляции, получивший название теплового центра, находится в промежуточном мозге. Деятельность его определяется двумя факторами: температурой крови и рефлекторными воздействиями. Если температура крови, омывающей промежуточный мозг, повышена, то центр терморегуляции возбуждается, и в деятельности организма наступают изменения, способствующие ее понижению. При понижении температуры крови центр теплообразования реагирует так, что усиливается интенсивность процессов, способствующих повышению температуры.
Другой способ возбуждения - рефлекторные воздействия. При воздействии температурных колебаний на кожу человека в рецепторах возникает возбуждение, которое поступает в тепловой центр. Оттуда импульсы идут уже к органам, связанным с теплообразованием (мышцы, печень и т. п.) и с теплоотдачей, и вызывают изменение их деятельности. Возбуждение из центров терморегуляции к органам теплообразования и теплоотдачи передается по симпатической нервной системе.
Исключительно большую роль в терморегуляции играет кора больших полушарий головного мозга. В нормальных условиях процесс теплообразования и теплоотдачи находится под ее влиянием.
Термокомфортной температурой для человека на воздухе обычно является +19°С, в воде - +34°С. При таких температурах система терморегуляции не включается.
Для поддержания постоянной температуры тела 36,6°С человеку нужно затратить 200 ккал в сутки.
Снижение температуры тела даже на 0,1° ведет к снижению иммунитета.
Похолодания в природе, как правило, бывают очень резкими. Чтобы безболезненно переносить климатические "сюрпризы", человек должен закаливаться.
Как известно, существуют три уровня реакции организма на разные по силе раздражители: тренировка, активация и стресс. Большой холод - это стресс, в том числе и психический. Если вы заранее боитесь переохлаждения, мерзнете и кутаетесь задолго до выхода на мороз, то вам надо срочно закалять не только тело, но и нервы. Эксперимент на выживание показал, что люди гибнут, как правило, не от холода, а от страха перед ним.
Настрой на закаливание ставит перед человеком стратегическую задачу: подружиться с холодом на всю жизнь. "Граница удовольствия" позволяет решать тактическую задачу: дозировать холод или жару. Если стратегия побуждает к закаливанию, то тактика контролирует нагрузку при закаливании. Причем делает это в соответствии с индивидуальными физиологическими особенностями организма и, разумеется, с учетом конкретных климатических условий.
Необходимость психологического настроя на закаливание, заинтересованность в нем - это самый важный принцип. На него нельзя жалеть времени.
Сущность закаливания - это тренировка процессов терморегуляции, которые включают теплопродукцию и теплоотдачу. Охлаждение стимулирует, с одной стороны, увеличение производства тепла в организме, а с другой - стремление сохранить его, не отдать наружу. Тренировка обучает организм четко реагировать на холод, быстро и активно отвечать на низкую температуру среды повышенной теплопродукцией и сниженной теплоотдачей. Таким образом, несмотря на холод, сохраняется обычная температура тела. У незакаленного человека механизмы терморегуляции срабатывают слабее, температура тела снижается, что ведет к ослаблению иммунной защиты и усилению активности патогенных микроорганизмов. В результате этого - простуды, грипп и др., которые не только выводят из рабочего состояния, но и аккумулируют вредные воздействия, что неизбежно подрывает общий потенциал организма и снижает его жизнестойкость.

Об авторе книг и статей: доктор, ведущий иглотерапевт Белоруссии, кандидат медицинских наук, Молостов Валерий Дмитриевич, опубликовал в Москве и Минске 23 книги (по неврологии, иглотерапии, массажу, мануальной терапии и по старению общества как организма), домашний телефон: Минск, (8---107-375-17) 240–70–75, E-mail: [email protected]. Моя страничка в Internet-е: www.molostov-valery.ru , где выложены книги (ранее опубликованные в Москве и Минске) с подробным обоснованием реального существования описанной здесь идеи.

В каком органе тела человека вырабатывается тепло?

Каждый человек хорошо знает, что температура нашего тела равна 36,6 градусов по Цельсию. Но медициной долгое время не был решён вопрос о том, в каком органе вырабатывается тепло у животных, в том числе и у человека. Наконец, российские физиологи нашли ответ на этот вопрос. (Например, читайте исследования доктора Молостова). Оказывается, тепло вырабатывается только одним органом – кожей. И тепло вырабатывают акупунктурные точки, в которые иглотерапевты так любят вводить иголки. Очень неожиданным открытием для всей мировой науки явились исследования о физиологической роли акупунктурных точек. Ни один учёный мира в других странах (даже в США, Германии и Франции) такими исследованиями не занимался.

Рисунок 1.

Эта статья посвящена акупунктурным точкам, о которых я могу рассказать много интересного, так как являюсь по профессии иглотерапевтом-профессионалом. Смотрите рисунок 1. На коже человека найдено 3478 акупунктурных точек. Кстати, количество акупунктурных точек у кота, коровы, слона, барана, собаки, курицы, слона, зубра ровно столько же - 3478 акупунктурных точек. И расположены у животных акупунктурные точки в анатомическом отношении точно там, где они находятся у человека. Можно предположить, что все теплокровные животные Земли имеют какого-то единого предка, например, какого-нибудь морского ихтиозавра. Интересно отметить, что все «теплокровные» животные имеют акупунктурные точки, а все холоднокровные животные (черви, лягушки, рыбы, змеи) акупунктурных точек не имеют на поверхности своей кожи. Смотрите рисунок 2 и 3.

Рисунок 2. Теплокровные.

Рисунок 3. Холоднокровные.

Каков механизм генерации (производства) тепла у теплокровных животных? Оказывается, энергетическим «веществом» для генерации тепла внутри акупунктурных точек является то электричество, которое вырабатывается в теле самого животного и человека. Физиология утверждает, что многие органы животного и человека играют роль маленьких электростанций. Самые крупные генераторы электричества – это сердце (выделяет 60% электроэнергии) и мозг (генерирует 30 % электричества). Также производят электричество пять органов чувств – это зрение, слух, осязание, обоняние, вкус. Они тоже работают как микроскопические электростанции, но они трансформируют световые, звуковые и химические виды энергии в электрические потенциалы определённой длины волны. Как вырабатывает электричество глаз? Свет попадает на сетчатку глаза, где трансформируется в сплошной поток электрических импульсов, поступающих через зрительный нерв в зрительные центры коры головного мозга. Такими же трансформаторами (не генераторами) электрической энергии являются другие органы чувств: уши, осязательные клубочки кожи, обонятельные луковицы в слизистой оболочке носа, вкусовые нервные сети в слизистой оболочке языка.

Какова судьба электронов, которые производит сердце, мозг и пять органов чувств? Оказывается, существует очень странная закономерность: поглощаются всеми генераторами электричества только 5% от произведенной ими электрической энергии. Остальные 95% электрической энергии от этих органов по межклеточному пространству поступают к коже и к акупунктурным точкам. Статическое электричество покрывает всю поверхность кожи. На поверхности кожи электричество «растекается», как воды океана растекаются по поверхности Земли. Далее точки акупунктуры поглощают статические токи, которые покрывают кожу «тонким слоем», сжигая их в своих «топках». Смотрите рисунок 4. При «сжигании электронов» вырабатывается тепло для человеческого тела в количестве 36,6 градусов по Цельсию.


Рисунок 4. Электроны поглощаются акупунктурной точкой.

Рисунок 5. Акупунктура.

Вот такой механизм производства тепла телом нашего организма и организма животного. Правда, пока остаётся без ответа вопрос, почему человек имеет нормальную температуру тела, которая равна точно плюс 36,6º по Цельсию? Не может медицинская наука дать ответ на вопрос «Почему введение иголок в акупунктурные точки оказывает лечебное воздействие на человека?» Смотрите рисунок 5. Эта проблема пока также не изучена. Будем надеяться, что в ближайшее десятилетие учёные найдут ответ и на эти вопросы. Кстати, остановка деятельности генераторов электричества в организме человека является единственной причиной естественной смерти абсолютно здорового, но очень старого человека. Оказывается, у старых людей сначала снижается, а потом прекращается выработка электрической энергии в мозге и в сердце. Смотрите рисунок 6. Смерть старого организма происходит в тот момент, когда «электростанции» в сердце (Ашоф-Таваровкий узел) и в мозгу (ретикулоэндотелиальная формация) прекращают генерировать электричество.

Рисунок 6. Старик.

Тогда моментально останавливается дыхание и сердцебиение, наступает смерть. Именно по этой причине умирают абсолютно здоровые, но очень старые люди, возраст которых составляет более 100 лет. Зная эту информацию можно легко продлить жизнь старым людям: надо вставить маленькие электрические генераторы в сердце и в мозг – и человек будет жить вечно. Ведь пока будет продолжаться сердцебиение и дыхание – до тех пор будет жить организм. Здоровый мозг, печень, почки, желудок, кишечник и другие органы могут функционировать тысячелетие.

Для правильного понимания механизмов закаливания и его успешного осуществления необходимо знать, каким образом человеческий организм может приобрести устойчивость к неблагоприятным воздействиям внешней среды. Известно, что температура тела здорового человека практически постоянна, хотя в жизни ему приходится переносить и жгучие морозы, и изнурительный зной. Происходит это вследствие того, что организм обладает способностью регулировать свою температуру. Без механизма, поддерживающего постоянную температуру тела, жизнь была бы, по словам И. П. Павлова, «игрушкой в руках внешних температурных условий».

У тех, кто привык чересчур тепло одеваться или установил в помещении кондиционер , создавая для себя слишком комфортные микроклиматические условия, теплорегулирующий аппарат редко вступает в работу, получает слабое функциональное развитие и уже не может служить надежной «броней» против изменяющихся атмосферных условий. Приспособляемость организма к капризам погоды ухудшается, и он становится подверженным простудным заболеваниям .

Регуляция тепла осуществляется путем выработки тепла организмом (теплопродукция) и путем отдачи его в окружающую среду (теплоотдача). Непрерывное протекание жизненных процессов в организме сопровождается образованием тепла. За сутки человек, даже находящийся в покое, вырабатывает примерно столько тепла, что его хватило бы на нагревание 15 л воды до кипения. Величина теплопродукции зависит от числа вовлеченных в работу органов и тканей. Не случайно, во время выполнения физической работы теплопродукция резко увеличивается.

Кроме тепла, которое образуется в результате обмена веществ в самом организме, человек в жаркое время года получает тепло из окружающей среды. И если бы одновременно с повышением температуры воздуха в организме не происходила теплоотдача, человек погиб бы от перегревания. Ведущая роль в процессе терморегуляции принадлежит высшим отделам центральной нервной системы. Повышение или понижение температуры окружающей и внутренней среды организма воспринимается особыми нервными окончаниями — терморецепторами, заложенными в коже и внутренних органах. Возникающие в них импульсы передаются в центральную нервную систему, которая и осуществляет ответную реакцию организма. Вот почему на изменение температуры реагирует не только участок тела, непосредственно подвергающийся раздражению, но и наступают изменения в функциях всего организма.

Так, при понижении температуры окружающей среды происходит рефлекторное сужение кровеносных сосудов кожи, вследствие чего количество протекающей через них крови уменьшается, а следовательно, снижается и отдача тепла. Выработка тепла во внутренних органах, главным образом в печени, увеличивается. Благодаря этому организму удается сберечь тепло и сохранить постоянную температуру тела.

При повышении температуры внешней среды ответная реакция организма, наоборот, выражается в усилении теплоотдачи: расширяются кожные сосуды, увеличивается количество протекающей через них крови, усиливается потоотделение и учащается дыхание. Выработка тепла при этом снижается, и тем самым организм избегает перегревания.

Нарушения теплового равновесия причиняют существенный вред здоровью. Чрезмерное охлаждение ведет к ослаблению организма, снижению его устойчивости, уменьшению сопротивляемости болезнетворным микробам, повышает риск развития заболеваний.

Академик И. П. Павлов говорил, что «простудный элемент есть специальный раздражитель кожи вместе с сыростью; это специальное раздражение ведет к возбуждению задерживающего нерва, понижает жизнедеятельность организма, его отдельных органов — легких, почек и др. И тогда все виды инфекции, которые всегда в наличности и которым, так сказать, только не дается ходу, берут перевес и дают то нефрит, то пневмонию и т. д.».

Исследования ученых показали, что у человека при погружении ступней ног в холодную воду происходит прилив крови к слизистым оболочкам носа и верхних дыхательных путей, повышение их температуры и увеличение количества выделяемой слизи. Все это создает благоприятные условия для развития микробов, попадающих на слизистые оболочки. Быстрое увеличение числа микробов и одновременное ослабление сопротивляемости организма ведут к возникновению воспалительных процессов, простудных заболеваний — катару верхних дыхательных путей, ангине, воспалению легких.

Вместе с тем было замечено, что люди неодинаково реагируют на охлаждение — не у всех возникают простудные заболевания. У некоторых уже при одном упоминании о холодной воде начинают бегать «мурашки» по телу. Но есть немало людей, которые безболезненно перенося резкие колебания тепла и холода.

Оказалось также, что степень чувствительности к холоду зависит не от врожденных особенностей организма, а обусловливается условиями жизни. Не у всех людей терморегулирующий аппарат действует одинаково хорошо. У тех, кто постоянно подвергает свой организм температурным воздействиям, он обычно тренируется и совершенствуется и на любое изменение атмосферных условий отвечает более быстрой и правильной реакцией.

И, наоборот, у тех, кто привык чересчур тепло одеваться, кто старается в помещении поддерживать одну и ту же температуру, искусственно создавая для себя слишком комфортные микроклиматические условия, теплорегулирующий аппарат редко вступает в работу, получает слабое функциональное развитие и уже не может служить надежной «броней» против изменяющихся атмосферных условий. Приспособляемость организма к капризам погоды ухудшается, и он становится подверженным простудным заболеваниям.

Теплорегулирующий аппарат действует значительно лучше на участках тела, которые постоянно подвергаются действию метеорологических факторов (лицо, руки), и «хуже работает» на тех частях, которые постоянно закрыты одеждой (грудь, спина). Значит, избегая смены тепла и холода, мы не даем возможности упражняться нашему терморегуляторному аппарату. Организм теряет способность своевременно реагировать на меняющиеся температурные условия, делается изнеженным и легче подвергается простудным заболеваниям. Что бы, например, произошло, если бы наподобие того, как мы закутываем свои холодовые точки, стали бы также предохранять глаза от всякого действия света, уши — от всякого звука и шума и т. д. Стоит припомнить, например, какая светобоязнь возникает у людей, бывших долго в темноте, или какая сильная звукобоязнь развивается после долгого пребывания в полной тишине, чтобы понять, в какое ненормальное состояние высокой болезненной восприимчивости мы приводим и наши холодовые точки кожи, раз мы устраняем их во время всей почти жизни от действия. Для ограждения себя от простудных заболеваний и повышения устойчивости организма необходимо постоянными и систематическими упражнениями добиться такого укрепления терморегулирующего аппарата, которое позволило бы человеку безболезненно переносить любые температурные колебания внешней среды. В этом, собственно, и заключается цель закаливания — путем целенаправленных воздействий развить имеющиеся в организме защитные силы, выработать в нем способность быстро и безотказно их мобилизовать. Благодаря закаливанию организм получает способность реагировать на изменение температуры окружающей среды раньше, чем наступит чрезмерное охлаждение или перегревание.

Помимо улучшения сопротивляемости организма по отношению к климатическим факторам, закаливающие процедуры оказывают благотворное влияние на весь организм — улучшают кровообращение, повышают тонус центральной нервной системы и обмен веществ, способствуют воспитанию воли и характера. Однако слишком сильное охлаждение или согревание может нарушить здоровье человека, независимо от степени его закалки. При острых заболеваниях и обострениях хронических недугов принимать закаливающие процедуры нельзя. В то же время, частые катары верхних дыхательных путей, ангины, фурункулез служат показаниями для назначения закаливающих процедур. Врачи утверждают, что люди, страдавшие этими заболеваниями, избавлялись от них путем систематически проводимого закаливания. И еще один совет: щедрыми дарами природы следует пользоваться умеючи, соблюдая научно обоснованные гигиенические правила.

В основе жизнедеятельности организма лежит обмен веществ и энергии, который сопровождается образованием тепла при биологическом окислении молекул белков, жиров и углеводов. То есть, в организме человека постоянно генерируется тепло. Интенсивность обмена веществ и количество образующегося тепла в организме напрямую связаны между собой. При увеличении скорости обменных процессов увеличивается теплообразование, а при повышении температуры тела ускоряется биологическое окисление. Чтобы не произошло затухания или лавинообразного роста этих процессов, организм имеет средства для отведения и сохранения тепла.

Человек относится к группе т.н. гомойотермных (теплокровных) организмов, способных сохранять температуру тела на постоянном уровне. Средняя температура «ядра» тела равна 37°С, и это значение колеблется незначительно в течение дня. Значительные изменения температуры тела человека могут наблюдаться во время болезни, при длительных изнурительных физических нагрузках или в экстремальных ситуациях. При этом организм человека может перенести понижение внутренней температуры тела на 10 °С, а её повышение – лишь на 5 °С. Способность организма поддерживать постоянную внутреннюю температуру зависит от возможности уравновешивать количество тепла, образующегося при метаболизме и поступающего из окружающей среды, с тем его количеством, которое отдает тело.

Температура тела отражает динамическое равновесие между образованием тепла и его отдачей. Она повышается, если образование тепла превышает его отведение, например, при интенсивных физических нагрузках в теплых и влажных условиях окружающей среды, и понижается, если теплопотери превосходят теплообразование.

Суммарная теплопродукция (теплообразование) в организме состоит из первичной и вторичной теплоты. Первичная теплота выделяется в ходе постоянно протекающих во всех органах и тканях реакций обмена веществ. Вторичная теплота образуется при расходовании энергии макроэргических соединений на выполнение человеком определенной мышечной работы. Уровень теплообразования в организме зависит от величины основного обмена, «специфически динамического действия» принимаемой пищи, мышечной активности и интенсивности метаболизма в тканях.

Метаболические процессы осуществляются с неодинаковой интенсивностью в различных органах и тканях, поэтому вклад в общую теплопродукцию организма отдельных органов и тканей неравнозначен. Наибольшее количество тепла образуется в скелетных мышцах при их тоническом напряжении или сокращении. Образование тепла, наблюдающееся в мышцах при этих условиях, получило название сократительного термогенеза (сократительной теплопродукции), который является наиболее значимым механизмом теплообразования у взрослого человека. У новорожденных, а также у мелких млекопитающих животных имеется механизм ускоренного теплообразования за счет возрастания метаболической активности в других тканях и, прежде всего, в буром жире. Бурую окраску этой ткани придает большое количество окончаний симпатических нейронов, содержащих медиатор норадреналин. В условиях холодового воздействия на организм под влиянием выделяющегося из симпатических нервных окончаний норадреналина происходит интенсивное окисление жирных кислот. Бурый жир характеризуется избытком митохондрий, которые окружают мелкие капельки жира в цитоплазме. Окисление жирных кислот в митохондриях бурой жировой ткани осуществляется без значимого синтеза макроэргов и, таким образом, с максимально возможным образованием теплоты. Этот механизм получил название несократительного термогенеза (несократительной теплопродукции). Посредством механизмов несократительного термогенеза уровень теплопродукции у человека может быть увеличен примерно в три раза по сравнению с уровнем основного обмена.

Определив среднюю температуру тела и зная его массу (Мт), можно приблизительно определить содержание тепла (СТ) в теле. Содержание тепла представляет собой общее количество калорий тепла в тканях организма. Чтобы определить СТ, надо установить удельную теплоемкость тканей организма.

Удельная теплоемкость субстанции представляет собой количество тепла, необходимого для изменения температуры этой субстанции на ГС. Килокалория - это единица измерения тепловой энергии, представляющая количество тепла, необходимого для того, чтобы повысить температуру 1 кг воды на один градус Цельсия. Следовательно, удельная теплоемкость воды равна 1,0 ккал*кг -1 *°С -1 . Другие компоненты тела имеют разную удельную теплоемкость. Средняя удельная теплоемкость тканей составляет 0,83 ккал*кг -1 *°С -1 . Таким образом, при повышении температуры тела человека массой 50 кг на один градус Цельсия увеличение количества теплоты составит 0,83 ккал на каждый килограмм массы тела, а общая величина составит 41,5 ккал (0,83 ккал*кг -1 *50 кг).

Зная среднюю удельную теплоемкость (0,83 ккал*кг -1 *°С -1), можно определить содержание тепла в организме СТ = 0,83 (Мт х Ттела).

Предположим, что средняя температура человека массой 50 кг равна 35,3 °С.

СТ = 0,83 (50 кг х 35,3°С);

СТ= 1,465 ккал.

Таким образом, тело человека массой 50 кг содержит 1,465 ккал тепла.


Перенос тепла

В состоянии покоя в теле среднего человека образуется тепла 1,25–1,50 ккал в минуту. Полное блокирование способности организма рассеивать тепло приведет к увеличению образования тепла до 75–90 ккал в час. Таким образом, способность избавляться от чрезмерного метаболического тепла играет очень важную роль даже в состоянии покоя.

а. Проведение

Проведение или кондукция представляет собой прямой перенос тепла между молекулами вещества в твердой, жидкой или газообразной среде. Проведение играет роль при переносе тепла от глубоких тканей к поверхности тела. Однако по причине низкой теплопроводности тканей организма количество переносимого тепла сравнительно невелико. Охлаждение поверхности тела через проведение осуществляется путем нагрева молекул воздуха, жидкости и твердых поверхностей, которые контактируют с кожей.

Интенсивность переноса тепла через проведение зависит от нескольких факторов:

Разницы температур кожи и контактирующей среды (воздух, жидкость, твердая поверхность);

Тепловых качеств этой среды (теплопроводность и теплоемкость);

Площади контакта.

При комнатной температуре предметы с высокой теплопроводностью и теплоемкостью кажутся на ощупь более холодными, так как они способны отводить и абсорбировать тепло в разы эффективнее, чем окружающий воздух. Находясь на природе, в жару, для эффективного охлаждения тела можно прилечь на большой камень, укрытый от солнца. Обладающий высокой теплопроводностью камень быстро заберет часть лишнего тепла от перегретого тела.

б. Конвекция

Эффективность переноса тепла через проведение зависит, в том числе, от того, насколько быстро контактирующий с кожей слой воздуха (или воды) покидает её после нагрева. Теплообмен путем перемещения слоев воздуха или воды называется конвекцией . Если конвекция протекает медленно, то на поверхности кожи образуется изолирующий слой нагретого воздуха, который снижает эффективность переноса тепла через проведение. Максимальная толщина изолирующего слоя может достигать 4–8 мм. Если же, напротив, прохладный воздух постоянно заменяет подогретые слои воздуха, отведение тепла увеличивается, так как изолирующий слой не успевает сформироваться.

Различают естественную и форсированную (принудительную) конвекцию. При естественной конвекции тепло уносится ламинарным потоком воздуха. Движущей силой при этом является разность температур тела и его окружения.

При форсированной конвекции осуществляется дополнительный обдув поверхности тела воздухом. Наиболее очевидные примеры - ветер, «сквозняк», поток воздуха от вентилятора; менее очевидные - интенсивное перемещение всего тела или отдельных его частей относительно окружающего воздуха. Поэтому с увеличением скорости бега или езды на велосипеде увеличивается интенсивность теплоотдачи.

Кроме того, явление конвекции играет большую роль в субъективном восприятии низкой температуры окружающего воздуха, в формировании т.н. ветро-холодового индекса . Известно, что в ветреную погоду холод переносится тяжелее, чем в штиль. Это следует учитывать при планировании различных видов активности вне помещений в холодное время года. С практической целью разработаны таблицы значений ветро-холодового индекса.

Следует отметить, что именно за счет конвекции большая часть вырабатываемого организмом тепла переносится в кровоток. Кровь, обладая большой теплоемкостью, является особенно хорошим накопителем и переносчиком тепла. Это способствует поддержанию теплового баланса всего организма.

в. Излучение

Все объекты, включая людей, постоянно излучают тепло в виде инфракрасных волн (т.н. лучистую энергию). Подобная форма переноса тепла не требует непосредственного контакта между объектами. При этом тепло передается от более нагретого объекта к менее нагретому. Так как температура тела человека обычно выше нормальной комнатной температуры, часть тепла отводится путем излучения. Только за счет излучения в состоянии покоя от тела к его окружению переносится до 60 % тепла.

С другой стороны, объекты с высокой температурой способны отдавать тепло телу человека. Например, бытовые электрообогреватели, печи, электроплиты. Самый крупный источник излучения – Солнце. Даже при относительно низкой температуре воздуха (вплоть до 0°С), тело человека может «подогреваться», получая тепловую энергию прямых и отраженных от снега, песка или воды солнечных лучей. Это явление хорошо знакомо альпинистам и горнолыжникам.

г. Испарение

Испарение – процесс перехода вещества из жидкого состояния в паро- или газообразное состояние. Испарение – эндотермический процесс, который он протекает с поглощением теплоты. Благодаря этому вода, испаряющаяся с дыхательных путей и с поверхности кожи, постоянно переносит тепло от тела в окружающую среду. Один литр испаренной воды уносит 580 ккал. Конвекция усиливает эффективность испарения. Процесс обратный испарению называется конденсацией.

В покое и при нейтральных температурных условиях вклад испарения в наружный перенос тепла относительно невелик и составляет около 20 % (для сравнения, вклад излучения – 60 %). Однако, в условиях высокой температуры воздуха механизмы «сухого теплообмена» начинают работать в обратном направлении, тело начинает нагреваться, получая тепло через излучение, проведение и конвекцию. В этом случае испарение остается единственным эффективным путем отведения тепла.

При выполнении физических упражнений испарение также выступает в роли основного процесса рассеяния тепла, его вклад может достигать 80 %. Необходимость развития этого механизма возникла вследствие того, что мощности процессов «сухого теплообмена» недостаточно для отведения всего избытка тепла, образующегося в результате интенсивной мышечной деятельности. Следует помнить, что испарение – основная защита организма от перегрева.

Около 300 мл воды ежедневно испаряется со слизистых оболочек дыхательных путей. Это так называемые неощущаемые потери жидкости. Они относительно постоянны и не способны помочь, когда телу необходимо отдать больше тепла. В неощущаемых потерях также участвует небольшое количество воды, диффундирующей через кожу.

Железистая или ощутимая потеря жидкости является результатом работы потовых желез. По поверхности кожи распределено от двух до четырех миллионов потовых желез. В условиях теплового стресса эти эккринные железы, контролируемые холинэргическими симпатическими нервными волокнами, секретируют большое количество гипотонического солевого раствора (0,2–0,4 % NaCl). Испарение пота с кожи оказывает охлаждающее действие. Охлажденная кожа, в свою очередь, отводит часть тепла от крови, циркулирующей между глубокими и поверхностными тканями.

Интенсивность испарения очень зависит от относительной влажности воздуха и находится от нее в обратной зависимости. В условиях повышенной влажности парциальное давление водяного пара в воздухе становится близким к его значению у влажной кожи, около 40 мм рт. ст., и дальнейшее насыщение воздуха испаренной влагой становится затрудненным. Скорость испарения значительно снижается, а капли выделившегося пота стекают по коже, пропитывают одежду или даже падают на землю. Так как эта вода не принимает участия в отведении тепла, то ее выделение становится неэффективным. Подобное обильное потоотделение может привести к быстрой дегидратации и перегреву организма. Выполнение физической работы в плотной, «недышащей» одежде так же осложняет испарение пота, так как между кожей и одеждой образуется насыщенная влагой прослойка воздуха. С другой стороны, постоянное удаление пота с кожи, например, сухим полотенцем, также препятствует охлаждению тела через испарение.

Именно испарение, а не выделение пота, охлаждает тело человека.

Значение тепла
Источники тепла
Производство тепла и теплоснабжение
Использование тепла
Новые технологии теплоснабжения

Значение тепла

Тепло – один из источников жизни на Земле. Благодаря огню стало возможным зарождение и развитие человеческого общества. С древнейших времён по сей день источники тепла служат нам верой и правдой. Не смотря на небывалый доселе уровень развития технологий, человек, как и многие тысячи лет назад, всё также нуждается в тепле. С ростом численности населения земного шара, потребность в тепле увеличивается.

Тепло стоит в ряду самых важных ресурсов среды обитания человека. Оно необходимо человеку для поддержания собственной жизни. Тепло также требуется для технологий, без которых современный человек не мыслит своего существования.

Источники тепла

Самым древним источникам тепла является Солнце. Позднее в распоряжении человека оказался огонь. На его основе человек создал технологию получения тепла из органического топлива.

Относительно недавно для производства тепла стали использовать ядерные технологии. Впрочем, сжигание органического топлива всё ещё остаётся основным способом добычи тепла.

Производство тепла и теплоснабжение

Развивая технологии, человек научился производить тепло в больших объёмах и передавать его на довольно значительные расстояния. Тепло для больших городов производится на крупных тепловых электростанциях. С другой стороны всё ещё остаётся множество потребителей, которых снабжают теплом мелкие и средние котельные. В сельской местности домохозяйства отапливаются от домашних котлов и печей.

Технологии по производству тепла вносят весомый вклад в загрязнение окружающей среды. Сжигая топливо, человек выбрасывает в окружающий воздух большое количество вредных веществ.

Использование тепла

В целом, человек производит гораздо больше тепла, чем использует с пользой для себя. Много тепла мы просто рассеиваем в окружающем воздухе.

Тепло теряется
из-за несовершенства технологий производства тепла,
при транспортировке тепла по теплопроводам,
из-за несовершенства систем отопления,
из-за несовершенства жилья,
из-за несовершенства вентиляции зданий,
при удалении «излишков» тепла в различных технологических процессах,
при сжигании отходов производства,
с выхлопными газами транспорта на двигателях внутреннего сгорания.

Для описания положения дел в производстве и потреблении тепла человеком хорошо подходит слово расточительность. Примером, я бы сказал, отъявленной расточительности является сжигание попутного газа на нефтяных месторождениях.

Новые технологии теплоснабжения

Человеческое общество тратит много сил и средств для получения тепла:
добывает топливо глубоко под землёй;
перевозит топливо от месторождений к предприятиям и жилищам;
строит установки для получения тепла;
строит тепловые сети для распределения тепла.

Наверное, следует задуматься: а всё ли здесь разумно, всё ли оправдано?

Так называемые технико-экономические преимущества современных систем теплоснабжения по своей сути являются сиюминутными. Они сопряжены со значительным загрязнением окружающей среды и не разумным использованием ресурсов.

Существует тепло, которое не надо добывать. Это тепло Солнца. Его нужно использовать.

Одной из конечных целей технологии теплоснабжения является производство и доставка горячей воды. Вы когда-нибудь пользовались летним душем? Ёмкость с краном, установленная на открытом месте под лучами Солнца. Весьма простой и доступный способ снабжения тёплой (даже горячей) водой. Что мешает использовать его?

С помощью тепловых насосов человек использует тепло Земли. Для теплового насоса не нужно топливо, не нужна протяжённая теплотрасса с её потерями тепла. Количество электроэнергии необходимое для работы теплового насоса относительно мало.

Преимущества самой современной и продвинутой технологии будут сведены на нет, если бестолково использовать её плоды. Зачем производить тепло вдали от потребителей, транспортировать его, затем распределять по жилищам, отапливая по дороге Землю и окружающий воздух?

Следует развивать распределённое производство тепла максимально приближенное к местам потребления, или даже совмещённое с ними. Давно известен способ производства тепла названный когенерацией. Когенерационные установки производят электроэнергию, тепло и холод. Для плодотворного использования этой технологии необходимо развивать среду обитания человека как единую систему ресурсов и технологий.

Представляется, что для создания новых технологий теплоснабжения следует
пересмотреть уже существующие технологии,
постараться уйти от их недостатков,
собрать на едином основании для взаимодействия и дополнения друг другом,
в полной мере использовать их достоинства.
Это подразумевает понимание



Copyright © 2024 Медицинский портал - Здравник.