Урок: "Методы изучения генетики человека. Наследственные болезни"

Цитогенетический метод основан на микроскопическом изучении хромосом в клетках человека. Его стали широко применять в исследованиях генетики человека с 1956 г., когда шведские ученые Дж. Тийо и А. Леван, предложив новую методику изучения хромосом, установили, что в кариотипе человека 46, а не 48 хромосом, как считали ранее.

Современный этап в применении цитогенетического метода связан с разработанным в 1969 г. Т. Касперсоном методом дифференциального окрашивания хромосом, который расширил -возможности цитогенетического анализа, позволив точно идентифицировать хромосомы по характеру распределения в них окрашиваемых сегментов (см. разд. 3.5.2.3).

Применение цитогенетического метода позволяет не только изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, но, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением их структуры. Кроме того, этот метод позволяет изучать процессы мутагенеза на уровне хромосом и кариотипа. Применение его в медико-генетическом консультировании для целей пренатальной диагностики хромосомных болезней дает возможность путем своевременного прерывания беременности предупредить появление потомства с грубыми нарушениями развития.

Материалом для цитогенетических исследований служат клетки человека, получаемые из разных тканей,-лимфоциты периферической крови, клетки костного мозга, фибробласты, клетки опухолей и эмбриональных тканей и др. Непременным требованием для изучения хромосом является наличие делящихся клеток. Непосредственное получение таких клеток из организма затруднено, поэтому чаще используют легкодоступный материал, каковым являются лимфоциты периферической крови.

В норме эти клетки не делятся, однако специальная обработка их культуры фитогемагглютинином возвращает их в митотический цикл. Накопление делящихся клеток в стадии метафазы, когда хромосомы максимально спирализованы и хорошо видны в микроскоп, достигается обработкой культуры колхицином или колцемидом, разрушающим веретено деления и препятствующим расхождению хроматид.

Микроскопирование мазков, приготовленных из культуры таких клеток, позволяет визуально наблюдать хромосомы. Фотографирование метафазных пластинок и последующая обработка фотографий с составлением кариограмм, в которых хромосомы выстроены парами и распределены по группам, позволяют установить общее число хромосом и обнаружить изменения их количества и структуры в отдельных парах (рис. 6.33). Кариотипы человека при некоторых хромосомных болезнях представлены на рис. 4.3-4.12.

Рис. 6.33. Нормальные кариотипы человка. А - женщины; Б - мужчины Вверху представлены хромосомные комплексы, внизу - кариограммы

В качестве экспресс-метода, выявляющего изменение числа половых хромосом, используют метод определения полового хроматина в неделящихся клетках слизистой оболочки щеки. Половой хроматин, или тельце Барра, образуется в клетках женского организма одной из двух Х-хромосом. Оно выглядит как интенсивно окрашенная глыбка, расположенная у ядерной оболочки (см. рис. 3.77). При увеличении количества Х-хромосом в кариотипе организма в его клетках образуются тельца Барра в количестве на единицу меньше числа Х-хромосом. При уменьшении числа Х-хромосом (моносомия X) тельце Барра отсутствует.

В мужском кариотипе Y-хромосома может быть обнаружена по более интенсивной по сравнению с другими хромосомами люминесценции при обработке их акрихинипритом и изучении в ультрафиолетовом свете.

Цитогенетический метод изучения наследственности человека представляет собой микроскопический анализ хромосом. Он стал широко применяться с начала 20-х годов 20-го столетия. С помощью метода осуществляется исследование морфологии человеческих хромосом и их подсчет. Его также используют для культивирования лейкоцитов, чтобы получить метафазные пластинки. Далее рассмотрим подробнее, что собой представляет цитогенетический метод изучения наследственности человека.

Общие сведения

Цитогенетический метод исследования генетики человека, его развитие и становление связаны с такими учеными, как Леван и Тио. Они в 1956 году первыми установили точное количество хромосом у людей. Их оказалось не 48, как думали ранее, а 46. Именно это и положило начало исследованию мейотических и митотических хромосом человека. В 1959-м году французскими учеными Готье, Тюрпеном и Леженом была установлена природа синдрома Дауна. Используя цитогенетический метод, они выявили, что болезнь имеет хромосомную этиологию. В последующие годы было описано еще множество патологий, часто встречающихся у людей и имеющих ту же природу. Сегодня цитогенетический метод изучения наследственности используется при диагностировании, составлении хромосомных карт, анализа мутационного процесса и решения прочих важных проблем. В 1960 году в США была разработана 1 Международная классификация. В основе нее использовались размеры хромосом, а также расположение центромеры - первичной перетяжки.

Анализ кариотипа

Оценка и выявление аномалий проводится в несколько приемов. Для выполнения анализа необходим фрагмент периферической крови больного объемом около 1-2 литров. Этапы цитогенетического метода при анализе кариотипа следующие:

  • Культивирование лимфоцитов.
  • Окраска.
  • Микроскопический анализ.

Культивирование лимфоцитов

Эта процедура необходима для стимулирования их деления. Это связано с тем, что возможности цитогенетического метода напрямую зависят от количества клеток, которые находятся на стадии метафазы, в тот момент когда хромосомы собраны наиболее компактно. Длительность культивирования, как правило, 72 часа. Увеличению числа метафазных клеток способствует введение в завершении процесса колхицина. Он приостанавливает на стадии метафазы деление, разрушает его веретено и повышает конденсацию хромосом. Затем клетки перемещаются в гипотонический раствор. Он провоцирует разрыв ядерной оболочки и свободное движение хромосом в цитоплазме.

Окрашивание

На этой стадии процесса клетки фиксируются с помощью уксусной к-ты и этанола в пропорции 1:3. Далее суспензию помещают на предметные стекла и сушат. В соответствии с целями анализа применяются разные приемы дифференциального окрашивания. Длительность процедуры - несколько минут. Окрашивание приводит к возникновению рисунка с поперечной исчерченностью, специфичного для каждой из хромосом.

Микроскопический анализ

Самым трудоемким процессом считается световое микроскопирование. Для его выполнения необходима высокая квалификация специалиста. Чтобы выявить хромосомные аномалии, следует проанализировать не меньше 30-ти пластинок. Весьма результативными считаются компьютерные методы исследования.

Разрешающая способность

Молекулярно-цитогенетический метод может применяться для анализа хромосом, отдельные сегменты которых могут иметь разную окраску. При этом кариотипы в целом похожи на красочные фантастические удивительные картины. Внедрены и активно применяются методы, с помощью которых осуществляется окрашивание хромосом в состоянии покоя, когда они максимально растянуты. Использование таких приемов позволяет идентифицировать сегменты, размер которых порядка 50 килобаз.

Развитие отрасли

В течение последних нескольких лет отмечается достаточно активный сдвиг в становлении области молекулярной биологии. Это прежде всего обуславливается работами по расшифровке генома людей, выполненными в рамках государственных и международных программ "Совокупность человеческих генов". В результате трудов были не только получены обширные по своему объему сведения по строению дезоксирибонуклеиновой кислоты. Были также проведены исследования современных технологий анализа, способов обработки больших объемов информации, созданы и сохранены информационные базы данных. На основании этих материалов сформировалось новое направление - молекулярная генетика. Она позволила обнаружить многочисленные специфичности в функциях хромосомного набора. Цитогенетический метод изучения используется для выявления новых элементов и звеньев, осуществления дешифровки мутации при наличии солидного числа врожденных заболеваний.

Специализированные области

Как видно, цитогенетический метод позволил решить существенные проблемы. В связи с этим стали появляться специализированные направления. В частности, сформировались такие области, как функциональная молекулярная генетика, врачебная, этническая геномика (этногеномика), сравнительная наука, исследующая гены и геномы живых существ и прочие.

Этногеномика

Основной ее задачей является анализ генетического многообразия в разнообразии генов отдельных территориальных общностей, наций, групп. В данном случае необходимо подчеркнуть принципиально важную идею. Благодаря этногеномике генетическая хромосомная механика стала влиять не только на имеющие определенное родство виды науки о терапии и жизнедеятельности, но и на достаточно отчужденные области, как, например, история.

Вариабельность

В процессе декодирования хромосомного набора, в то время как уже выявлены главные особенности в его конструкции, ученым стала ясна серьезность многообразия генома. Анализ вариабельности позволяет решить разнообразные проблемы, как практического, так и теоретического характера. Особое значение цитогенетический метод имеет при оценке развития человечества, принимая во внимание происхождение, цикл перемещения, формирование, родство и взаимодействие разных видов.

Анализ ДНК

Исследования дезоксирибонуклеиновой кислоты людей, населяющих планету сегодня, позволяют получить информацию о достаточно отдаленных явлениях и хронологических фактах, даже до самого момента появления человека. Так, к примеру, было выявлено, что в дезоксирибонуклеиновой кислоте вписано множество событий. Чтобы интерпретировать результаты этих исследований, необходимо рассматривать ДНК разных представителей всех общин, определяя степень и хромосомного родства.

Патологии

Причины многих заболеваний, к примеру, синдром Шерешевского-Тернера, Клайнфельтера, Дауна и прочих, долгое время оставались невыясненными. Но использование цитологического метода позволило обнаружить аномалии хромосом. Мужчины, страдающие синдромом Клайнфельтера, отличаются недоразвитостью гонад, умственной отсталостью, дегенерацией семенных канальцев, непропорциональностью конечностей и прочим. У женщин диагностируется болезнь Шерешевского-Тернера. Синдром проявляется в отсутствии менструаций и позднем половом созревании, недоразвитости гонад, небольшом росте, бесплодии и прочих признаках. В результате исследований было выявлено нерасхождение половых хромосом в процессе формирования родительских гамет. Дальнейший анализ показал, что следствием этого являются различные аномалии. Отмечается, в частности, полисомия. Например, мужчины могут иметь набор XX Y, XXX Y, ХХХХ Y, женщины же - XXX, ХХХХ. Существует особенность значения половых хромосом при детерминации человеческого пола при их нерасхождении. Так, в отличие от дрозофилы, она проявляется в том, что XX Y определяет исключительно мужской, а Х0 - женский пол. Вместе с этим увеличение количества хромосом Х при сочетании с одной Y только усиливает болезнь Клайнфельтера. Полисомия либо трисомия у женщин также является провоцирующим фактором для развития патологий, сходных с синдромом Шерешевского-Тернера.

В заключение

Патологии, спровоцированные нарушениями в нормальном количестве половых хромосом, обнаруживаются анализом хроматина. При нормальном наборе у мужчин он в клетках не обнаруживается. У здоровых женщин хроматин выявляется в виде 1 тельца. На фоне полисмии у женщин и мужчин число телец хроматина всегда меньше количества хромосом Х на единицу. Для каждой такой зиготы генетическая активность присутствует только у одного структурного элемента. Остальные же хромосомы Х в виде полового хроматина принимают гетеропикнотическое состояние. Причины данной закономерности сегодня выявлены не до конца. Тем не менее предполагается, что она обуславливается нивелированием активности генов в половых хромосомах гомо- и гетерогаметного пола. Кроме описанных выше, патологии могут возникать вследствие нерасхождения аутосом, а также благодаря разнообразным перестройкам типа делеций, транслокаций и прочих. С хромосомными аномалиями врожденного типа связано множество болезней. Именно поэтому цитогенетический метод имеет особое значение в их выявлении.

Основные методы изучения генетики человека:

Генеалогический;

Близнецовый;

Цитогенетический метод;

Популяционно-статистический метод;

Генеалогический метод основан на составлении родословной человека и изучении характера наследования признака. Это самый давний метод. Суть его состоит в установлении родословных связей и определении доминантных и рецессивных признаков и характера их наследования. Особенно эффективен этот метод при исследовании генных мутаций.

Метод включает два этапа: сбор сведений о семье за возможно большее число поколений и генеалогический анализ. Родословная составляется, как правило, по одному или нескольким признакам. Для этого собираются сведения о наследовании признака среди близких и дальних родственников.

Представителей одного поколения располагают в одном ряду в порядке их рождения.

Далее начинается второй этап – анализ родословной с целью установления характера наследования признака. В первую очередь устанавливается, как проявляется признак у представителей разных полов, т.е. сцепленность признака с полом. Далее определяется, является ли признак доминантным или рецессивным, сцеплен ли он с другими признаками и т.д. При рецессивном характере наследования признак проявляется у небольшого числа особей не во всех поколениях. Он может отсутствовать у родителей. При доминантном наследовании признак часто встречается практически во всех поколениях.

Характерной особенностью наследования признаков, сцепленных с полом, является их частое проявление у лиц одного пола. В случае, если этот признак доминантный, то он чаще встречается у женщин. Если признак рецессивный, то в этом случае он чаще проявляется у мужчин.

Анализ многочисленных родословных и характер распространения признака в обширной человеческой популяции помогли генетикам установить характер наследования многих нормальных признаков человека, таких как курчавость и цвет волос, цвет глаз, веснушчатость, строение мочки уха и т.д., а также такие аномалии, как дальтонизм, серповидно-клеточная анемия и др.

Таким образом, с помощью метода родословных устанавливается зависимость признака от генетического материала, тип наследования (доминантный, рецессивный, аутосомный, сцепленный с половыми хромосомами), наличие сцепления генов, зиготность (гомозиготность или гетерозиготность) членов семьи, вероятность наследования гена в поколениях, тип наследования признака. При аутосомно-доминантном наследовании (появление признака связано с доминантным геном) признак, как правило, проявляется в каждом поколении (наследование по горизонтали). При аутосомно-рецессивном наследовании признак проявляется редко, не в каждом поколении (наследование по вертикали), однако, в родственных браках больные дети рождаются чаще. При наследовании, сцепленном с полом, частота проявления признака у особей разного пола неодинакова.


Цитогенетический метод заключается в микроскопическом исследовании структуры хромосом и их количества у здоровых и больных людей. Из трех типов мутаций под микроскопом могут обнаруживаться лишь хромосомные и геномные мутации. Наиболее простым методом является экспресс-диагностика – исследование количества половых хромосом по Х-хроматину. В норме у женщин одна Х-хромосома в клетках находится в виде тельца хроматина, а у мужчин такое тельце отсутствует. При трисомии по половой паре у женщин наблюдаются два тельца, а у мужчин – одно. Для идентификации трисомии по другим парам исследуется кариотип соматических клеток и составляется идиограмма, которая сравнивается со стандартной.

Хромосомные мутации связаны с изменением числа или структуры хромосом. Из них под микроскопом при специальном окрашивании хорошо выявляются транслокации, делеции, инверсии. При транслокации или делеции хромосомы соответственно увеличиваются или уменьшаются в размере. А при инверсии меняется рисунок хромосомы (чередование полос).

Хромосомные мутации могут являться маркерами в цитогенетической методике исследования того или иного заболевания. Кроме того, этот метод используется для определения поглощенных людьми радиационных доз и в других научных исследованиях.

Популяционно-статистический метод дает возможность рассчитать в популяции частоту встречаемости нормальных и патологических генов, определить соотношение гетерозигот – носителей аномальных генов. С помощью данного метода определяется генетическая структура популяции (частоты генов и генотипов в популяциях человека); частоты фенотипов; исследуются факторы среды, изменяющие генетическую структуру популяции. В основе метода лежит закон Харди–Вайнберга, в соответствии с которым частоты генов и генотипов в многочисленных популяциях, обитающих в неизменных условиях, и при наличии панмиксии (свободных скрещиваний) на протяжении ряда поколений остаются постоянными. Вычисления производятся по формулам: р + q = 1, р2 + 2pq + q2 = 1. При этом р – частота доминантного гена (аллеля) в популяции, q – частота рецессивного гена (аллеля) в популяции, р2 – частота гомозигот доминантных, q2 – гомозигот рецессивных, 2pq – частота гетерозиготных организмов. Используя этот метод, можно также определять частоту носителей патологических генов.

Цитогенетический метод. Кариотип человека. Характеристика методов дифференциального окрашивания хромосом. Денверская и Парижская номенклатура. Классификация хромосом по соотношению длины плеч и расчет центромерного индекса.

Цитогенетический метод. Цитогенетический метод состоит в исследовании под микроскопом хромосомного набора клеток больного. Как известно, хромосомы находятся в клетке в спирализованном состоянии и их невозможно увидеть. Для того же, чтобы визуализировать хромосомы клетку стимулируют и вводят ее в митоз. В профазе митоза, а также в профазе и метафазе мейоза хромосомы деспирализуются и визуализируются.

В ходе визуализации оценивают количество хромосом, составляют идиограмму, в которой все хромосомы записывают в определенном порядке согласно Денверской классификации. На основании идиограммы можно говорить о наличии хромосомной абберации или изменении числа хромосом, а соответственно о наличии генетического заболевания.

Все методы дифференциальной окраски хромосом позволяют выявлять их структурную организацию, которая выражается в появлении поперечной исчерченности, разной в разных хромосомах, а также некоторых других деталей.

Дифференциальное окрашивание хромосом. Разработан ряд методов окрашивания (бэндинга), позволяющих выявить комплекс поперечных меток (полос, бэндов) на хромосоме. Каждая хромосома характеризуется специфическим комплексом полос. Гомологичные хромосомы окрашиваются идентично, за исключением полиморфных районов, где локализуются разные аллельные варианты генов. Аллельный полиморфизм характерен для многих генов и встречается в большинстве популяций. Выявление полиморфизмов на цитогенетическом уровне не имеет диагностического значения.

А. Q-окрашивание. Первый метод дифференциального окрашивания хромосом был разработан шведским цитологом Касперссоном, использовавшим с этой целью флюоресцентный краситель акрихин-иприт. Под люминесцентным микроскопом на хромосомах видны участки с неодинаковой интенсивностью флюоресценции - Q-сегменты. Метод лучше всего подходит для исследования Y-хромосом и потому используется для быстрого определения генетического пола, выявления транслокаций (обменов участками) между X- и Y-хромосомами или между Y-хромосомой и аутосомами, а также для просмотра большого числа клеток, когда необходимо выяснить, имеется ли у больного с мозаицизмом по половым хромосомам клон клеток, несущих Y-хромосому.

Б. G-окрашивание. После интенсивной предварительной обработки, часто с применением трипсина, хромосомы окрашивают красителем Гимзы. Под световым микроскопом на хромосомах видны светлые и темные полосы - G-сегменты. Хотя расположение Q-сегментов соответствует расположению G-сегментов, G-окрашивание оказалось более чувствительным и заняло место Q-окрашивания в качестве стандартного метода цитогенетического анализа. G-окрашивание дает наилучшие результаты при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы).

В. R-окрашивание дает картину, противоположную G-окрашиванию. Обычно используют краситель Гимзы или флюоресцентный краситель акридиновый оранжевый. Этим методом выявляют различия в окрашивании гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.

Г. C-окрашивание используют для анализа центромерных районов хромосом (эти районы содержат конститутивный гетерохроматин) и вариабельной, ярко флюоресцирующей дистальной части Y-хромосомы.

Д. T-окрашивание применяют для анализателомерных районов хромосом. Эту методику, а также окрашивание районов ядрышковых организаторов азотнокислым серебром (AgNOR-окрашивание) используют для уточнения результатов, полученных путем стандартного окрашивания хромосом.

Классификация и номенклатура равномерно окрашенных хромосом человека впервые были приняты на международном совещании в 1960 году в г. Денвере, в дальнейшем несколько измененные и дополненные (Лондон, 1963 и Чикаго, 1966). Согласно Денверовской классификации все хромосомы человека разделены на 7 групп, расположенных в порядке уменьшения их длины и с учетом центриольного индекса (отношение длины короткого плеча к длине всей хромосомы, выраженное в процентах). Группы обозначаются буквами английского алфавита от А до G. Все пары хромосом принято нумеровать арабскими цифрами

В начале 70-х годов XX века был разработан метод дифференциальной окраски хромосом, выявляющий характерную сегментацию, который позволил индивидуализировать каждую хромосому (рис. 58). Различные типы сегментов обозначают по методам, с помощью которых они выявляются наиболее отчетливо (Q-сегменты, G-сегменты, Т-сегменты, S-сегменты). Каждая хромосома человека содержит свойственную только ей последовательность полос, что позволяет идентифицировать каждую хромосому. Хромосомы спирализованы максимально в метафазе, менее спирализованы в профазе и прометафазе, что позволяет выделить большее число сегментов, чем в метафазе.

На метафазной хромосоме (рис. 59) приводятся символы, которыми принято обозначать короткое и длинное плечо, а также расположение районов и сегментов. В настоящее время существуют ДНК-маркеры или зонды, с помощью которых можно определить изменение определенного, даже очень маленького, сегмента в хромосомах (цитогенетические карты). На международном конгрессе генетики человека в Париже в 1971 г. (Парижская конференция по стандартизации и номенклатуре хромосом человека) была согласована система символов для более краткого и однозначного обозначения кариотипов.
При описании кариотипа:
указывается общее число хромосом и набор половых хромосом, между ними ставится запятая (46, XX; 46, XY);
отмечается какая хромосома лишняя или какой не хватает (это ука-зывается ее номером 5, 6 и др., или буквами данной группы А, В и др.); знаком «+» указывают на увеличение количества хромосом, знаком «-» указывают на отсутствие данной хромосомы 47, XY,+ 21;
плечо хромосомы, в котором произошло изменение (удлинение короткого плеча указывается символом (р+); укорочение (р-); удлинение длинного плеча указывается символом (q+); укорочение (q-);
символы перестроек (транслокация обозначается t, а делеция - del) помещают перед номерами вовлеченных хромосом, а перестроечные хромосомы заключают в скобки. Наличие двух структурно-аномальных хромосом обозначается точкой с запятой (;) или нормальной дробью (15/21).

Роль близнецового метода в исследовании наследственности и среды в формировании признаков. Виды близнецов. Проблема предрасположенности к заболеваниям. Факторы риска. Генеалогический метод (анализ родословного древа). Критерии определения типа наследования.

Близнецовый метод основан на изучении фенотипа и генотипа близнецов для определения степени влияния среды на развитие различных признаков. Среди близнецов выделяются однояйцевые и двуяйцевые.

Однояйцевые близнецы (идентичные) образуются из одной зиготы, разделившейся на ранней стадии дробления на две части. В этом случае одна оплодотворенная яйцеклетка дает начало не одному, а сразу двум зародышам. Они имеют одинаковый генетический материал, всегда одного пола, и наиболее интересны для изучения. Сходство у таких близнецов почти абсолютное. Мелкие различия могут объясняться влиянием условий развития.

Двуяйцевые близнецы (неидентичные) образуются из различных зигот, в результате оплодотворения двух яйцеклеток двумя сперматозоидами. Они похожи друг на друга не более чем родные братья или сестры, рожденные в разное время. Такие близнецы могут быть однополыми и разнополыми.

Близнецовый метод позволяет определить степень проявления признака у пары, влияние наследственности и среды на развитие признаков. Все различия, которые проявляются у однояйцевых близнецов, имеющих одинаковый генотип, связаны с влиянием внешних условий. Большой интерес представляют случаи, когда такая пара была по каким-то причинам разлучена в детстве и близнецы росли и воспитывались в разных условиях.

Изучение разнояйцевых близнецов позволяет проанализировать развитие разных генотипов в одинаковых условиях среды. Близнецовый метод позволил установить, что для многих заболеваний значительную роль играют условия среды, при которых происходит формирование фенотипа.

Например, такие признаки как группа крови, цвет глаз и волос определяются только генотипом и от среды не зависят. Некоторые заболевания, хотя и вызываются вирусами и бактериями, в некоторой степени зависят от наследственной предрасположенности. Такие заболевания, как гипертония и ревматизм, в значительной степени определяются внешними факторами и в меньшей степени – наследственностью.

Таким образом, близнецовый метод позволяет выявить роль генотипа и факторов среды в формировании признака, для чего изучаются и сравниваются степени сходства (конкордантность) и различий (дискордантность) монозиготных и дизиготных близнецов

Генеалогический метод заключается в анализе родословных и позволяет определить тип наследования (доминантный
рецессивный, аутосомный или сцепленный с полом) признака, а также его моногенность или полигенность. На основе полученных сведений прогнозируют вероятность проявления изучаемого признака в потомстве, что имеет большое значение для предупреждения наследственных заболеваний.

Генеалогический анализ является самым распространенным, наиболее простым и одновременно высоко информативным методом, доступным каждому, кто интересуется своей родословной и историей своей семьи

Цитогенетика представляет собой самостоятельный раздел учения о наследственности, в котором исследуются различные, прежде всего, наблюдаемые (эксплицированные) носители, содержащие в себе информацию о генетической наследственности. Такими носителями выступают хромосомы различных типов (политенные, митотические и мейотические), пластиды, интерфазные ядра, и, в наименьшей степени - митохондрии.

Исходя из этого, цитогенетический метод представляет собой совокупность способов и технологий изучения, прежде всего, хромосом, в ходе которых устанавливается их количественный параметр, производится их химико-биологическое описание, исследуется структура и режимы поведения во время клеточного деления. Научной задачей данного исследования является установление связи между характером и динамикой изменения структуры хромосом и картиной, отражающей изменчивость признаков.

Одним из важнейших направлений исследования, которое предполагает цитогенетический метод, является проведение анализа кариотипа человека. Данное исследование, как правило, проводят на культурах, в которых происходит деление половых и соматических клеток.

Самая распространенная культура для такого рода исследований - клетки периферической крови, такие как лимфоциты, фибробласты и клетки костного мозга. Самой доступной культурой, используемой в медицинской цитогенетике, являются лимфоциты крови. Причина этого состоит в том, что, как правило, они являются предметом анализа и в При плода цитогенетический метод предполагает использование клеточных культур, выбор которых обусловлен рядом факторов. Главным из них является срок беременности. Например, при этом сроке менее 12 недель, цитогенетический анализ хромосом лучше всего производить с участием клеток хориона, а при сроках беременности более 12 недель, целесообразно для исследования рассматривать клетки самого плода. Для этой цели они специально выделяются из плаценты и крови плода.

Для установления кариотипа цитогенетический наследственности требует получения образца крови в количестве не менее 1-2 мл. При этом сам метод предполагает ведение исследования, состоящего из трех основных этапов:

Выделение и на которых будет осуществляться анализ;

Окраска препарата;

Проведение тщательного анализа препарата под микроскопом.

Эффективным цитогенетический метод генетики может быть только тогда, когда будут соблюдены следующие условия. Во-первых, должно быть определенное количество клеток, находящихся в метафазной стадии. Во-вторых, культивирование должно проводиться в строгом соответствии с установленными правилами и в течение периода не менее 72 часов. В-третьих, фиксация клеток должна производиться раствором и метанола в строгом соотношении этих веществ 3: 1.

На этапе окраски препарата для выбор цветов производится с учетом самой цели исследования, то есть, какой тип перестроек необходимо изучить. Чаще всего, используют метод сплошного окрашивания, так как он наиболее прост для определения количественного параметра хромосом. Современные исследования больше всего применяют данный метод окрашивания для определения аномалий кариотипа в их количественном выражении. Но такой цитогенетический метод не дает возможности определить и выявить структурную динамику хромосом. Поэтому применяют другие, специальные методы, которые позволяют нивелировать данный недостаток метода сплошного окрашивания. Наиболее распространенные из них, такие как метод дифференцированной окраски, G-метод, R-метод и иные.

И, наконец, третий этап исследования состоит в микроскопическом изучении окрашенных хромосом, находящихся в метафазной стадии. В ходе него устанавливается количество нормальных и аномальных по своему состоянию клеток организма плода человека. Для этого, как правило, проводится анализ нескольких тканей.

К методам, широко используемым при изучении генетики человека относятся: генеалогический, популяционно-статистический, близнецовый, метод дерматоглифики, цитогенетический, биохимический, методы генетики соматических клеток.

Генеалогический метод генетики человека

В основе этого метода лежит составление и анализ родословных. Как метод изучения генетики человека генеалогический метод стали применять с начала ХХ столетия, когда выяснилось, что анализ родословных может заменить собой неприменимый к человеку гибридологический метод. При составлении родословной, исходным является человек, родословную которого изучают – пробанд. При составлении родословных таблиц используют условные обозначения, предложенные Г. Юстом в 1931г. С помощью генеалогического метода может быть установлена наследственная обусловленность изучаемого признака, а также тип его наследования (аутосомно-доминантный, аутосомно-рецессивный, Х-сцепленный, Y-сцепленный). При анализе родословных по нескольким признакам может быть выявлен сцепленный характер их наследования, что используется при составлении хромосомных карт. Этот метод позволяет изучить интенсивность мутационного процесса. Он широко используется в медико-генетическом консультировании для прогнозирования потомства.

Близнецовый метод генетики человека

Этот метод заключается в изучении закономерностей наследования признаков в парах одно- и двуяйцевых близнецов. Он предложен в 1875г. Гальтоном первоначально для оценки роли наследственности и среды в развитии психических свойств человека. Этот метод позволяет выявить наследственный характер признака, оценить эффективность действия на организм некоторых внешних факторов. Суть метода заключается в сравнении проявления признака в разных группах близнецов при учете сходства или различия их генотипов. Монозиготные близнецы, развивающиеся из одной оплодотворенной яйцеклетки, генетически идентичны. Поэтому среди монозиготных близнецов наблюдается высокий процент конкордатных пар, в которых признак развивается у обоих близнецов. Сравнение монозиготных близнецов, воспитывающихся в разных условиях постэмбтионального периода, позволяет выявить признаки, в формировании которых существенная роль принадлежит факторам среды. По этим признакам наблюдается дискордантность – различия. Сохранение сходства несмотря различие условий воспитания, свидетельствует о наследственной обусловленности признака.

Установление соотносительной роли наследственности и среды в развитии различных патологических состояний позволяет врачу правильно оценить ситуацию и проводить профилактические мероприятия при наследственной предрасположенности или осуществлять вспомогательную терапию при его наследственной обусловленности.

Трудности близнецового метода генетики человека связаны:

  1. с относительно низкой частотой рождения близнецов;
  2. с идентификацией монозиготности близнецов, что имеет большое значение для получения достоверных выводов.

Несмотря на трудоемкость метода и возможность ошибок при определении их монозиготности, высокая объективность выводов делает его одним из широко применяемых методов генетики человека.

Популяционно- статистический метод генетики человека

С помощью популяционно-статистического метода изучают наследственные признаки в больших группах населения, в одном или нескольких поколениях. Существенным моментом при использовании этого метода является статистическая обработка данных. Этим методом можно рассчитать частоту встречаемости в популяции различных аллелей гена, выяснить распространение в ней различных наследственных признаков, в том числе и заболеваний.

При статистической обработке материала, получаемому при обследовании группы населения по интересующему исследователя признаку, основой для выяснения генетической структуры популяции является закон нентического равновесия Харди-Вайнберга. Он отражает закономерность, в соответствии с которой при определенных условиях соотношения аллелей генов и генотипов в генофонде популяции сохраняется неизменным в ряду поколений этой популяции. На основании этого закона, имея данные о частоте встречаемости в популяции рецессивного фенотипа, обладающего гомозиготным генотипом, можно рассчитать частоту встречаемости указанного аллеля в генофонде данного поколения.

Методы дерматоглифики и пальмоскопии - как методы генетики человека

В 1892г. Ф.Гальтоном в качестве одного из методов исследования человека был предложен метод изучения кожных гребешковых узоров пальцев и ладоней, а также сгибательных ладонных борозд. Он установил, что указанные узоры являются индивидуальной характеристикой человека и не изменяются в течении жизни.

В настоящее время установлена наследственная обусловленность кожных узоров, хотя характер наследования окончательно не выяснен.вероятно, признак наследуется по полигенному типу.

Дерматоглифические исследования важны при идентификации близнецов. Изучение людей с хромосомными заболеваниями выявило у них специфические изменения не только рисунков пальцев и ладоней, но и характера основных сгибательных борозд на коже ладоней. Менее изучены дерматоглифические изменения при генных болезнях.

В основном эти методы генетики человека применяют с целью установления отцовства.

Методы генетики соматических клеток

С помощью этих методов изучают наследственность и изменчивость соматических клеток, что компенсирует невозможность применения к человеку гибридологического анализа. Эти методы, основанные на размножении этих клеток в искусственных условиях, анализировать генетические процессы в отдельных клетках организма, и благодаря полноценности генетического материала использовать их для изучения генетических закономерностей целого организма.

В генетических исследованиях человека используют следующие приемы:

  1. культивирование – позволяет получить достаточное количество генетического материала для различных исследований;
  2. клонирование – получение потомков одной клетки;
  3. селекция соматических клеток с помощью искусственных сред используется для отбора клеток с интересующими исследователя свойствами;
  4. гибридизация соматических клеток основана на слиянии совместно культивируемых клеток разных типов.

Гибридные клетки, содержащие 2 полных генома, при делении обычно «теряют» хромосомы предпочтительно одного из видов. Таким образом, можно получать клетки с желаемым набором хромосом, что дает возможность изучать сцепление генов и их локализацию в определенных хромосомах.

Благодаря методам генетики соматических клеток можно изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Развитие этих методов определило возможность точной диагностики наследственных болезней в пренатальном периоде.

Цитогенетический метод генетики человека

Цитогенетический метод генетики человека основан на микроскопическом изучении хромосом в клетках человека. Его стали широко применять с 1956г. Современный этап в применении цитогенетического метода связан с разработанным в 1969г. Т. Касперсоном методом дифференциального окрашивания хромосом, который расширил возможности цитогенетического анализа. Применение цитогенетического метода позволяет изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма и диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением их структуры.

Материалом для цитогенетических исследований служат клетки человека получаемые из разных тканей. Непременным требованием для изучения хромосом является наличие делящихся клеток (в основном лимфоциты периферической крови). В качестве экспресс-метода, выявляющего изменение числа половых хромосом, используют метод определения полового хроматина в неделящихся клетка слизистой оболочки щеки.

Биохимический метод генетики человека

С помощью биохимических методов изучают наследственные заболевания, обусловленные генными мутациями, и полиформизм по нормальным первичным продуктам генов. Впервые эти методы генетики человека стали применять в начале ХХ в. В последнее время их широко используют в поиске новых форм мутантных аллелей. С их помощью описано более 1000 врожденных болезней обмена веществ. Для многих из них выявлен дефект первичного генного продукта.

Биохимическую диагностику наследственных нарушений обмена проводят в 2 этапа. На первом этапе отбирают предположительные случаи заболеваний, на втором – более сложными и точными методами уточняют диагноз заболевания. Применение биохимических исследований для диагностики заболеваний в пренатальном периоде или непосредственно после рождения позволяет своевременно выявить патологию и начать специфические медицинские мероприятия.



Copyright © 2024 Медицинский портал - Здравник.