Производство химических волокон и тканей из них. Химические волокна

Волокнами называют тела, длина которых во много раз превышает их очень малые размеры поперечного сечения, обычно измеряемого микронами. Волокнистые материалы, т.е. вещества, состоящие из волокон, имеют широкое распространение. Это разнообразные текстильные изделия, мех, кожа, бумага и т.д. Почти до начала 20 века для изготовления волокна и тканей на его основе использовались только природные волокнистые материалы: хлопок, лен, натуральный шелк и пр.

Впервые получение искусственного волокна было осуществлено продавливанием через узкие отверстия азотнокислого эфира целлюлозы в спирто-ацетоновой смеси. В н.в. уже известно свыше 500 различных видов химических волокон, из которых освоено и выпускается промышленностью более 40. По своему происхождению все волокна могут быть подразделены на природные и химические. Химические в свою очередь делятся на искусственные, изготовляемые из ВМС, находящихся в природе в готовом виде (целлюлоза, казеин) и синтетические волокна, получаемые из высокополимеров, предварительно синтезируемых из мономеров.

Если свойства природных волокон изменяются в узких пределах, то химические волокна могут обладать комплексом заранее заданных свойства в зависимости от их будущего назначения. Из химических волокон вырабатываются товары широкого потребления: ткани, трикотаж, одежда, обувь и т.д. В производстве различных типов химических волокон, как из природных полимеров, так и из смол, имеется много общего, хотя каждый метод обладает своими характерными особенностями.

Принципиальные схемы производства химических волокон независимо от исходного сырья делится на четыре стадии.

1. Получение исходного материала (полупродукта). В том случае, если сырьем являются природные ВМС, то их предварительно необходимо очистить от примесей. Для синтетических волокон – это синтез полимеров – получение смолы. При всем многообразии исходных полимерных материалов к ним предъявляются следующие общие требования, обеспечивающие возможность формования волокна и достаточную прочность его:

– линейное строение молекул, позволяющее растворять или плавить исходный материал для формования волокна и ориентировать молекулы в волокне;

– ограниченный молекулярный вес, так как при малой величине молекулы не достигается прочность волокна, а при слишком большой возникают трудности при формовании волокна из-за малой подвижности молекул;

– полимер должен быть чистым, так как примеси снижают прочность волокна.

2. Приготовление прядильной массы. Не все природные и синтетические материалы могут служить основой для производства волокна. Получение вязких концентрированных растворов - высокополимеров в доступных растворителях или перевод смолы в расплавленное состояние – обязательное условие для осуществления процесс прядения. Только в растворе или в расплавленном состоянии могут быть созданы условия, позволяющие снизить энергию взаимодействия макромолекул и после преодоления межмолекулярных связей ориентировать молекулы вдоль оси будущего волокна.

3.Формование волокна является самой ответственной операцией и заключается в том, что прядильная масса подается в фильеру (нитеобразователь), имеющую большое число мельчайших отверстий в донышке в зависимости от метода формования. Пучки тонких волокон, образовавшихся из струек, через ряд направляющих приспособлений непрерывно отводятся в приемное устройство и затем вытягиваются наматывающими приспособлениями: бобиной, роликом, центрифугой. В ходе формования линейные макромолекулы ориентируются вдоль оси волокна. Изменяя условия формования и вытяжки можно получить разные свойства волокна.

4.Отделка заключается в придании волокну различных свойств, необходимых для дальнейшей переработки. Для этого волокна очищают тщательной промывкой от всяких примесей. Кроме того, волокно отбеливается, в некоторых случаях окрашивается и ему сообщается обработкой мыльным или жиросодержащим раствором большая скользкость, что улучшает его способность перерабатываться на текстильных предприятиях.

Вискозный метод производства искусственного волокна из целлюлозы является наиболее широко применяемым способом. Выпуск вискозных волокон в виде шелка, корда и штапеля составляет примерно 76% всех химических волокон.

Для подготовки прядильного раствора целлюлоза с влажностью 5-6% в виде листов размером 600 *800 мм обрабатывается 18-20% раствором едкого натра (процесс мерсеризации). При этом целлюлоза, впитывая раствор едкого натра, сильно набухает. Из нее вымывается большая часть гемицеллюлозы, частично разрушаются межмолекулярные связи и в результате образуется новое химическое соединение – щелочная целлюлоза.

[С 6 Н 7 О 2 (ОН) 3 ]n + nNаОН↔[С 6 Н 7 О 2 (ОН) 2 ОН*NаОН]n

Реакция между целлюлозой и концентрированным раствором едкого натра является обратимой. В зависимости от применяемой аппаратуры и формы целлюлозы процесс осуществляется при 20-50 0 С в течение 10-60 мин. Затем щелочная целлюлоза отжимается от избытка едкого натра, который направляется на регенерацию, где фильтруется, укрепляется, отстаивается, после чего вновь возвращается на мерсеризацию. Далее щелочная целлюлоза измельчается и выдерживается в определенных условиях (20-22 0 С). В этом процессе, называемом предварительным созреванием, в результате окисления в щелочной среде кислородом воздуха снижается степень полимеризации целлюлозы, что позволяет в широких пределах регулировать вязкость получаемого затем прядильного раствора. После этого деструктированная щелочная целлюлоза обрабатывается сероуглеродом (ксанотогенирование целлюлозы). В результате реакции получается оранжево-желтый ксантогенат целлюлозы, который в отличие от исходной целлюлозы, хорошо растворяется в 4-7% растворе едкого натра. Образующийся вязкий раствор называется вискозой. Состав и свойства получаемого ксантогената целлюлозы в большой степени зависят от продолжительности и температуры процесса, а также количества введенного сероуглерода. Все перечисленные операции проводятся последовательно в 4-5 отдельных аппаратах или осуществляются до окончательного растворения в одном аппарате.

Широкому распространению производства вискозного волокна способствует доступность и дешевизна сырья. Вискозное волокно устойчиво к действию органических растворителей, выдерживает длительное воздействие температуры. Из недостатков следует отметить слабую стойкость волокна по отношению к щелочам и значительную потерю прочности в мокром состоянии.

Из вискозы, кроме шелка и штапеля, получают целлофан, корд, каракуль, искусственный волос и укупорку для бутылок.

При взаимодействии целлюлозы с уксусным ангидридом в присутствии уксусной кислоты и в качестве катализатора серной или хлорной кислоты образуется уксуснокислый эфир целлюлозы, а из него ацетатное волокно. Полиамидное волокно - капрон получается из смолы капрон, исходным сырьем для которой является капролактам. Последний вырабатывается в виде белого порошка из фенола, бензола или циклогексана.

XIX век ознаменовался важными открытиями в науке и технике. Резкий технический бум коснулся практически всех сфер производств, многие процессы были автоматизированы и перешли на качественно новый уровень. Техническая революция не обошла стороной и текстильное производство - в 1890 году во Франции впервые было получено волокно, изготовленное с применением химических реакций. С этого события началась история химических волокон.

Виды, классификация и свойства химических волокон

Согласно классификации все волокна подразделяются на две основные группы: органические и неорганические. К органическим относятся искусственные и синтетические волокна. Разница между ними состоит в том, что искусственные создаются из природных материалов (полимеров), но с помощью химических реакций. Синтетические волокна в качестве сырья используют синтетические полимеры, процессы же получения тканей принципиально не отличаются. К неорганическим волокнам относят группу минеральных волокон, которые получают из неорганического сырья.

В качестве сырья для искусственных волокон используются гидратцеллюлозные, ацетилцеллюлозные и белковые полимеры, для синтетических - карбоцепные и гетероцепные полимеры.

Благодаря тому, что при производстве химических волокон используются химические процессы, свойства волокон, в первую очередь механические, можно изменять, если использовать разные параметры процесса производства.

Главными отличительными свойствами химических волокон, по сравнению с натуральными, являются:

  • высокая прочность;
  • способность растягиваться;
  • прочность на разрыв и на длительные нагрузки разной силы;
  • устойчивость к воздействию света, влаги, бактерий;
  • несминаемость.

Некоторые специальные виды обладают устойчивостью к высоким температурам и агрессивным средам.

ГОСТ химические нити

По Всероссийскому ГОСТу классификация химических волокон достаточно сложная.

Искусственные волокна и нити, согласно ГОСТу, делятся на:

  • волокна искусственные;
  • нити искусственные для кордной ткани;
  • нити искусственные для технических изделий;
  • технические нити для шпагата;
  • искусственные текстильные нити.

Синтетические волокна и нити, в свою очередь, состоят из следующих групп: волокна синтетические, нити синтетические для кордной ткани, для технических изделий, пленочные и текстильные синтетические нити.

Каждая группа включает в себя один или несколько подвидов. Каждому подвиду присвоен свой код в каталоге.

Технология получения, производства химических волокон

Производство химических волокон имеет большие преимущества по сравнению с натуральными волокнами:

  • во-первых, их производство не зависит от сезона;
  • во-вторых, сам процесс производства хоть и достаточно сложный, но гораздо менее трудоемкий;
  • в-третьих, это возможность получить волокно с заранее установленными параметрами.

С технологической точки зрения, данные процессы сложные и всегда состоят из нескольких этапов. Сначала получают исходный материал, потом преобразовывают его в специальный прядильный раствор, далее происходит формирование волокон и их отделка.

Для формирования волокон используются разные методики:

  • использование мокрого, сухого или сухо-мокрого раствора;
  • применение резки металлической фольгой;
  • вытягивание из расплава или дисперсии;
  • волочение;
  • плющение;
  • гель-формование.

Применение химических волокон

Химические волокна имеют очень широкое применение во многих отраслях. Главным их преимуществом является относительно низкая себестоимость и продолжительный срок службы. Ткани из химических волокон активно используются для пошива специальной одежды, в автомобильной промышленности - для укрепления шин. В технике разного рода чаще применяются нетканые материалы из синтетического или минерального волокна.

Текстильные химические волокна

В качестве сырья для производства текстильных волокон химического происхождения (в частности, для получения синтетического волокна) используются газообразные продукты переработки нефти и каменного угля. Таким образом, синтезируются волокна, которые различаются по составу, свойствам и способу горения.

Среди наиболее популярных:

  • полиэфирные волокна (лавсан, кримплен);
  • полиамидные волокна (капрон, нейлон);
  • полиакрилонитрильные волокна (нитрон, акрил);
  • эластановое волокно (лайкра, дорластан).

Среди искусственных волокон самые распространенные - это вискозное и ацетатное. Вискозные волокна получают из целлюлозы - преимущественно еловых пород. С помощью химических процессов этому волокну можно придать визуальную схожесть с натуральным шелком, шерстью или хлопком. Ацетатное волокно производят из отходов от производства хлопка, поэтому они хорошо впитывают влагу.

Нетканые материалы из химических волокон

Нетканые материалы можно получать как из натуральных, так и из химических волокон. Часто нетканые материалы производят из вторсырья и отходов других производств.

Волокнистая основа, подготовленная механическим, аэродинамическим, гидравлическим, электростатическим или волокнообразующим способами, скрепляется.

Основной стадией получения нетканых материалов является стадия скрепления волокнистой основы, получаемой одним из способов:

  1. Химический или адгезионный (клеевой) - сформованное полотно пропитывается, покрывается или орошается связующим компонентом в виде водного раствора, нанесение которого может быть сплошным или фрагментированным.
  2. Термический - в этом способе используются термопластичные свойства некоторых синтетических волокон. Иногда используются волокна, из которых состоит нетканый материал, но в большинстве случаев в нетканый материал еще на стадии формования специально добавляют небольшое количество волокон с низкой температурой плавления (бикомпонент).

Объекты промышленности химических волокон

Поскольку химическое производство охватывает несколько областей промышленности, все объекты химической промышленности делятся на 5 классов в зависимости от сырья и области применения:

  • органические вещества;
  • неорганические вещества;
  • материалы органического синтеза;
  • чистые вещества и химреактивы;
  • фармацевтическая и медицинская группа.

По типу назначения объекты промышленности химических волокон разделяются на основные, общезаводские и вспомогательные.

Волокно – один из самых удивительных материалов, который человечество смогло использовать, взяв идею его из природы. Первые волокна получали только из натуральных природных материалов: шерсть, нити шелкопряда, различные растения.

Впервые идею о возможности получить волокно искусственным путем высказал французский ученый Реомюр. Случилось это ещё в далеком 1734 году. Запуск завода по серийному производству волокна произошел всё в той же Франции, однако, более чем через полтора века после Реомюра – в 1890 году. В основе производства химического волокна лежала переработка растворов эфира целлюлозы, который в то время применялся также и для производства бездымного пороха. В период между 1890-мы и 1940-мы годами происходили испытания различных полимеров на предмет возможности их использования для изготовления химических волокон. Фактически, появление химических волокон пришлось на 1940-е, когда произошло несколько успешных испытаний некоторых полимеров и мономеров. На этом этапе, впрочем, не планировалось делать химические или вискозные волокна основным источником волокон – синтетике предоставлялось право только дополнять производство натуральных волокон. В последующие десятилетия уровень развития технологий химической промышленности значительно вырос, и сегодня мы наблюдаем практически тотальный перевес химических волокон над натуральными.

Технология производства волокна + видео

На первом этапе производства химического волокна необходимо приготовить прядильную массу, которая в зависимости от физико-химических свойств исходного полимера получает растворением её в подходящем растворителе или переводом её в расплавленное состояние. Полученный вязкий формовочный раствор тщательно очищают многократным фильтрованием и удаляют твердые частицы и пузырьки воздуха. В случае необходимости раствор (или расплав) дополнительно обрабатывают - добавляют красители, подвергают “созреванию” и так далее. Если кислород может окислить высокомолекулярное вещество, то “созревание” проводят в атмосфере инертного газа.


На второй стадии происходит формование волокна. Для того чтобы осуществить процесс, раствор или расплав полимера с помощью специального дозирующего устройства необходимо подать в так называемую фильеру. Фильера представляет собой небольшой сосуд из прочного теплостойкого и химически стойкого материала с плоским дном, имеющим большое число маленьких отверстий, диаметр которых может колебаться от 0,04 до 1,0 мм. После того как волокно прошло формование, его необходимо собирать в пучки или жгуты, которые в свою очередь будут состоять из многих тонких волокон. Полученную нить при необходимости промывают, подвергают специальной обработке - замасливанию, нанесению специальных препаратов (для облегчения текстильной переработки), высушивают. Готовую нить необходимо намотать на катушку или шпулю. При производстве штапельного волокна нить режут на отрезки (штапельки). Штапельное волокно собирают в кипы.

Как делают химические нити из лавсана:

Оборудование для производства волокна

Производство волокна требует достаточно сложного оборудования, которое зачастую стоит немало денег. Аппарат, который изготовляет волокно, а также формирует нити и кипы, похож на громадную прядильную машинку, а, по сути, таковым и является. Полимер помещается в начальный отсек машины и дальше происходит расчленение на волокна и нити.


Традиционно наиболее авторитетными производителями машин для изготовления волокон являются американские и немецкие агрегаты. Среди прочих стоит отметить Davis-Stadard, PMI Co Ltd, Reifenhauser, Schwing Gmbh и другие. Отдельно стоит упомянуть об отечественных агрегатах, которые не уступают иностранным образцам, а по некоторым качественным показателям сильно опережают их: Формаш-НЕВА и Химтекстильмаш.

Еще один обзор такого производства с оборудованием:

Стоит отметить, что месячное содержание такого агрегата, как импортного, так и отечественного, будет обходиться в достаточно кругленькую сумму, потому что без постоянного осмотра система производства волокон начнет загрязняться и, естественно, выходить из строя. Таким образом, резюмируя всё вышесказанное, стоит сказать, что несмотря на свою распространенность и массовость, производство химических волокон остается одним из наиболее трудоемких процессов в текстильной индустрии.

Это волокна, получаемые из органических природных и синтетических полимеров. В зависимости от вида исходного сырья волокна химические подразделяются на синтетические (из синтетических полимеров) и искусственные (из природных полимеров). Иногда к волокнам химическим относят также волокна, получаемые из неорганических соединений (стеклянные, металлические, базальтовые, кварцевые). Волокна химические выпускают в промышленности в виде:

1) моноволокна (одиночное волокно большой длины);

2) штапельного волокна (короткие отрезки тонких волокон);

3) филаментных нитей (пучок, состоящий из большого числа тонких и очень длинных волокон, соединённых посредством крутки), филаментные нити в зависимости от назначения разделяются на текстильные и технические, или кордные нити (более толстые нити повышенной прочности и крутки).

Химические волокна - волокна (нити), получаемые промышленными способами в заводских условиях.

Химические волокна в зависимости от исходного сырья подразделяются на основные группы:

    искусственные волокна получают из природных органических полимеров (например, целлюлозы, казеина, протеинов) путем извлечения полимеров из природных веществ и химического воздействия на них

    синтетические волокна вырабатываются из синтетических органических полимеров, полученных путем реакций синтеза (полимеризации и поликонденсации) из низкомолекулярных соединений (мономеров), сырьем для которых являются продукты переработки нефти и каменного угля

    минеральные волокна - волокна, получаемые из неорганических соединений.

Историческая справка.

Возможность получения волокон химических из различных веществ (клей, смолы) предсказывалась ещё в 17 и 18 вв., но только в 1853 англичанин Аудемарс впервые предложил формовать бесконечные тонкие нити из раствора нитроцеллюлозы в смеси спирта с эфиром, а в 1891 французский инженер И. де Шардонне впервые организовал выпуск подобных нитей в производственном масштабе. С этого времени началось быстрое развитие производства химического волокон. В 1896 освоено производство медноаммиачного волокна из растворов целлюлозы в смеси водного аммиака и гидроокиси меди. В 1893 англичанами Кроссом, Бивеном и Бидлом предложен способ получения вискозных волокон из водно-щелочных растворов ксантогената целлюлозы, осуществлённый в промышленном масштабе в 1905. В 1918-20 разработан способ производства ацетатного волокна из раствора частично омыленной ацетилцеллюлозы в ацетоне, а в 1935 организовано производство белковых волокон из молочного казеина.

На фото справа ниже - не химическое волокно конечно, а х/б ткань.

Производство синтетических волокон началось с выпуска в 1932 поливинилхлоридного волокна (Германия). В 1940 в промышленном масштабе выпущено наиболее известное синтетическое волокно - полиамидное (США). Производство в промышленном масштабе полиэфирных, полиакрилонитрильных и полиолефиновых синтетических волокон осуществлено в 1954-60. Свойства. Волокна химические часто обладают высокой разрывной прочностью [до 1200 Мн/м2 (120 кгс/мм2)], значительным разрывным удлинением, хорошей формоустойчивостью, несминаемостью, высокой устойчивостью к многократным и знакопеременным нагружениям, стойкостью к действиям света, влаги, плесени, бактерий, хемои термостойкостью.

Физико-механические и физико-химические свойства волокон химическихе можно изменять в процессах формования, вытягивания, отделки и тепловой обработки, а также путём модификации как исходного сырья (полимера), так и самого волокна. Это позволяет создавать даже из одного исходного волокнообразующего полимера волокна химические, обладающие разнообразными текстильными и другими свойствами (табл.). Волокна химические можно использовать в смесях с природными волокнами при изготовлении новых ассортиментов текстильных изделий, значительно улучшая качество и внешний вид последних. Производство. Для производства волокон химических из большого числа существующих полимеров применяют лишь те, которые состоят из гибких и длинных макромолекул, линейных или слаборазветвлённых, имеют достаточно высокую молекулярную массу и обладают способностью плавиться без разложения или растворяться в доступных растворителях.

Такие полимеры принято называть волокнообразующими. Процесс складывается из следующих операций: 1) приготовления прядильных растворов или расплавов; 2) формования волокна; 3) отделки сформованного волокна. Приготовление прядильных растворов (расплавов) начинают с перевода исходного полимера в вязкотекучее состояние (раствор или расплав). Затем раствор (расплав) очищают от механических примесей и пузырьков воздуха и вводят в него различные добавки для термоили светостабилизации волокон, их матировки и т.п. Подготовленный таким образом раствор или расплав подаётся на прядильную машину для формования волокон. Формование волокон заключается в продавливании прядильного раствора (расплава) через мелкие отверстия фильеры в среду, вызывающую затвердевание полимера в виде тонких волокон.

В зависимости от назначения и толщины формуемого волокна количество отверстий в фильере и их диаметр могут быть различными. При формовании волокон химических из расплава полимера (например, полиамидных волокон) средой, вызывающей затвердевание полимера, служит холодный воздух. Если формование проводят из раствора полимера в летучем растворителе (например, для ацетатных волокон), такой средой является горячий воздух, в котором растворитель испаряется (так называемый «сухой» способ формования). При формовании волокна из раствора полимера в нелетучем растворителе (например, вискозного волокна) нити затвердевают, попадая после фильеры в специальный раствор, содержащий различные реагенты, так называемую осадительную ванну («мокрый» способ формования). Скорость формования зависит от толщины и назначения волокон, а также от метода формования.

При формовании из расплава скорость достигает 600-1200 м/мин, из раствора по «сухому» способу - 300-600 м/мин, по «мокрому» способу - 30-130 м/мин. Прядильный раствор (расплав) в процессе превращения струек вязкой жидкости в тонкие волокна одновременно вытягивается (фильерная вытяжка). В некоторых случаях волокно дополнительно вытягивается непосредственно после выхода с прядильной машины (пластификационная вытяжка), что приводит к увеличению прочности В. х. и улучшению их текстильных свойств. Отделка волокон химических заключается в обработке свежесформованных волокон различными реагентами. Характер отделочных операций зависит от условий формования и вида волокна.

При этом из волокон удаляются низкомолекулярные соединения (например, из полиамидных волокон), растворители (например, из полиакрилонитрильных волокон), отмываются кислоты, соли и другие вещества, увлекаемые волокнами из осадительной ванны (например, вискозными волокнами). Для придания волокнам таких свойств, как мягкость, повышенное скольжение, поверхностная склеиваемость одиночных волокон и др., их после промывки и очистки подвергают авиважной обработке или замасливанию. Затем волокна сушат на сушильных роликах, цилиндрах или в сушильных камерах. После отделки и сушки некоторые волокна химические подвергают дополнительной тепловой обработке - термофиксации (обычно в натянутом состоянии при 100-180°С), в результате которой стабилизируется форма пряжи, а также снижается последующая усадка как самих волокон, так и изделий из них во время сухих и мокрых обработок при повышенных температурах.

Лит.:

Характеристика химических волокон. Справочник. М., 1966; Роговин З.А., Основы химии и технологии производства химических волокон. 3 изд., т. 1-2, М.-Л., 1964; Технология производства химических волокон. М., 1965. В.В.Юркевич.

а также другие источники:

Большая Советская Энциклопедия;

Калмыкова Е.А., Лобацкая О.В. Материаловедение швейного производства: Учеб. Пособие,Мн.: Выш. шк., 2001412с.

Мальцева Е.П., Материаловедение швейного производства, - 2-е изд., перераб. и доп.М.: Легкая и пищевая промышленность, 1983,232.

Бузов Б.А., Модестова Т.А., Алыменкова Н.Д. Материаловедение швейного производства: Учеб. для вузов,4-е изд., перераб и доп.,М., Легпромбытиздат, 1986 – 424.

По химическому составу волокна подразделяются на органические и неорганические волокна.

Органические волокна образуются из полимеров, имеющих в своем составе атомы углерода, непосредственно соединённых друг с другом, или включающие наряду с углеродом атомы других элементов.

Неорганические волокна образуются из неорганических соединений (соединения из химических элементов кроме соединений углерода).

Для производства химических волокон из большого числа существующих полимеров применяют лишь волокнообразующие полимеры. Волокнообразующие полимеры состоят из гибких и длинных макромолекул, линейных или слаборазветвлённых, имеют достаточно высокую молекулярную массу и обладают способностью плавиться без разложения или растворяться в доступных растворителях.

Природные и химические волокна………………………………………...…….3

Области применения химических волокон…………….………………………..5

Классификация химических волокон………………………………………..…..7

Управление качеством химических волокон…………………….…………...…9

Технологический процесс получения химических волокон……………...…..10

Гибкость производства……………………………………………...…………..14

Список используемой литературы…………………………………………...…15

Природные и химические волокна

Все виды волокон в зависимости от происхождения подразделяются на две группы – природные и химические. Среди природных различают органические (хлопок, лен, пенька, шерсть, натуральный шелк) и неорганические (асбестовое) волокна.

Развитие промышленности химических волокон находится в прямой зависимости от наличия и доступности основных видов сырья. Древесина, нефть, уголь, природный газ и газы нефтепереработки, являющиеся исходным сырьем для получения химических волокон, имеются в нашей стране в достаточных количествах.

Химические волокна уже давно перестали быть только заменителями шелка и других естественных волокон (хлопка, шерсти). В данное время они образуют совершенно новый класс волокон, имеющий самостоятельное значение. Из химических волокон могут быть изготовлены красивые, прочные и общедоступные товары народного потребления, а также высококачественные технические изделия, не уступающие по качеству изделиям из натуральных волокон, а во многих случаях превосходящие их по ряду важнейших показателей.

В текстильной и трикотажной промышленности химические волокна применяются как в чистом виде, так и в смеси с другими волокнами. Из них вырабатывают одежные, плательные, подкладочные, бельевые, декоративные и обивочные ткани; искусственные меха, ковры, чулки, белье, платья, верхнюю одежду, трикотажные и другие изделия.

Стремительное развитие производства химических волокон стимулируется рядом объективных причин:

а) производство химических волокон требует меньших капиталовложений для выработки единицы продукции, чем производство любого вида природного волокна;

б) трудозатраты, требуемые для выработки химических волокон, значительно ниже, чем в производстве любого вида природных волокон;

в) химические волокна обладают разнообразными свойствами, что обеспечивает высокое качество изделий. Кроме того, применение химических волокон позволяет расширять ассортимент текстильных изделий. Не менее важным является и тот факт, сто свойства природных волокон можно изменять только в очень узких пределах, в то время как свойства химических волокон, варьируя условия формования или последующих обработок, можно направленно изменять в очень широком диапазоне.

Области применения химических волокон

В зависимости от назначения химические волокна вырабатываются в виде мононитей, комплексных нитей, штапельного волокна и жгута.

Мононити – одиночные нити большой длины, не делящиеся в продольном направлении и пригодные для непосредственного изготовления текстильных и технических изделий. Мононити чаще всего используются в виде лески, а также для изготовления рыболовных сетей и мукомольных сит. Иногда мононити применяются также в различных измерительных приборах.

Комплексные нити – состоят из двух или более элементарных нитей, соединенных между собой скручиванием, склеиванием, и пригодные для непосредственного изготовления изделий. Комплексные нити, в свою очередь, подразделяются на две группы: текстильные и технические. К текстильным нитям относятся тонкие нити, предназначенные преимущественно для изготовления изделий широкого потребления. К техническим нитям относятся нити с большой линейной плотностью, используемые для изготовления технических и кордных изделий (авто- и авиашины, транспортерные ленты, приводные ремни).

В последнее время комплексные нити высокой прочности при разрыве и с минимальной деформацией при нагружении (высокомодульные) начали широко применяться для армирования пластиков, а высокопрочные нити со специальными свойствами – для изготовления дорожных покрытий.

Штапельное волокно, состоящее из элементарных нитей различной длины резки, до недавнего времени использовалось только для изготовления пряжи на хлопко-, шерсте- и льнопрядильных машинах. В настоящее время волокна с круглым поперечным срезом находят широкое применение для изготовления настенных и напольных ковров и верхнего слоя междуэтажный перекрытий. Волокна длиной 2 – 3 мм (фибриды) находят применение для изготовления синтетической бумаги.

Жгут, состоящий из большого числа продольно сложенных элементарных нитей, используется для изготовления пряжи на текстильных машинах.

Для изделий определенного ассортимента (верхний трикотаж, чулочно-насочные изделия и т.п.) вырабатываются текстурированные нити, которым путем дополнительной обработки придаются повышенная объемность, извитость или растяжимость.

Все вырабатываемые в настоящее время химические волокна по объему производства могут быть разделены на две группы – многотоннажные и малотоннажные. Многотоннажные волокна и нити предназначены для массовой выработки изделий народного потребления и технический изделий. Такие волокна вырабатываются в большом объеме на основе небольшого числа исходных полимеров (ГЦ, ЛЦ, ПА, ПЭТ, ПАН, ПО).

Малотоннажные волокна или, как их еще называют, волокна специального назначения, из-за специфических свойств вырабатываются в небольшом количестве. Они применяются в технике, медицине и ряде отраслей народного хозяйства. К ним относятся термо- и жаростойкие, бактерицидные, огнестойкие, хемосорбционные и другие волокна. В зависимости от природы исходного волокнообразующего полимера химические волокна подразделяются на искусственные и синтетические.

В зависимости от природы исходного волокнообразующего полимера химические волокна подразделяются на искусственные и синтетические.

Классификация химических волокон

Искусственные волокна вырабатываются на основе природных полимеров и подразделяются на гидратцеллюлозные, ацетатные и белковые. Самыми многотоннажными являются гидратцеллюлозные волокна, получаемые вискозным или медноаммиачным методом.

Ацетатные волокна получают на основе уксуснокислых эфиров (ацетатов) целлюлозы с различным содержанием ацетатных групп (ВАЦ и ТАЦ волокна).

Волокна на основе белков растительного и животного происхождения вырабатываются в весьма ограниченном количестве вследствие их низкого качества и использования для их производства пищевого сырья.

Синтетические волокна вырабатываются из полимеров, синтезируемых в промышленности из простых веществ (капролактама, акрилонитрила, пропилена и др.). В зависимости от химического строения макромолекул исходного волокнообразующего полимера они подразделяются на две группы: карбоцепные и гетероцепные.

К карбоцепным относятся волокна, полученные на основе полимера, основная макромолекулярная цепь которого построена только из атомов углерода, соединенных друг с другом. Наибольшее применение из этой группы волокон получили полиакрилонитрильные и полиолефиновые волокна. В меньшей степени, но все же в сравнительно больших количествах вырабатываются волокна на основе поливинилхлорида и поливинилового спирта. В ограниченном количестве вырабатываются фторосодержащие волокна.

К гетероцепным волокнам относятся волокна, полученные из полимеров, основные макромолекулярные цепи которых кроме азота углерода содержат атомы кислорода, азота или других элементов. Волокна этой группы – полиэтилентерефталатные и полиамидные – являются самыми многотоннажными из всех химических волокон. Полиуретановые волокна выпускаются в сравнительно небольшом объеме.

Особо следует отметить группу высокопрочных высокомодульных волокон технического назначения – углеродные, поучаемые из графитизированных или обугленных полимеров, стеклянные, металлические или волокна, получаемые из нитридов или карбидов металлов. Эти волокна применяются главным образом для изготовления армированных пластиков и других конструкционных материалов.

Управление качеством химических волокон

Химические волокна часто обладают высокой разрывной прочностью [до 1200 Мн/м2 (120кгс/мм2)], значит разрывным удлинением, хорошей формоустойчивостью, несминаемостью, высокой устойчивостью к многократным и знакопеременным нагружениям, стойкостью к действиям света, влаги плесени, бактерий, хемо- и термостойкостью. Физико-механические и физико-химические свойства химических волокон можно изменять в процессах формования, вытягивания, отделки и тепловой обработки, а также путём модификации как исходного сырья (полимера), так и самого волокна. Это позволяет создавать даже из одного исходного волокнообразующего полимера химические волокна, обладающие разнообразными текстильными и другими свойствами. Химические волокна можно использовать в смесях с природными волокнами при изготовлении новых ассортиментов текстильных изделий, значительно улучшая качество и внешний вид последних.

Технологический процесс получения химических волокон

Технологический процесс производства химических волокон, как правило включает три стадии. Исключение составляет только производство полиамидных, полиэтилентерефталатных и некоторых других волокон, где технологический процесс начинается с синтеза волокнообразующего полимера.

Первой стадией процесса является получение прядильного раствора или расплава. На этой стадии исходный полимер переводится в вязкотекучее состояние растворением или плавлением. В отдельных случаях (получение ПВС волокон) перевод полимера в вязкотекучее состояние происходит также в результате пластификации. Полученный прядильный раствор или расплав подвергается смешению и очистке (фильтрация, обезвоздушивание). На этой стадии для придания волокнам определенных свойств в прядильный раствор или расплав иногда вводят различные добавки (термостабилизаторы, красители, матирующие вещества и т. п.).



Copyright © 2024 Медицинский портал - Здравник.