Мозжечок головного мозга человека и его функции, фото, где находится. Белое вещество мозжечка

Главным координирующим центром человека является его мозг. И состоит он из определенных частей. В данной статье пойдет речь о том, что же такое мозжечок: функции и строение данного органа.

Что это такое?

В самом начале нужно разобраться с понятиями, которые будут активно использованы в данной статье. Итак, что же такое мозжечок головного мозга? Это определенная структура, которая располагается в задней части головы. А именно над мостом и продолговатым мозгом, позади больших полушарий.

Строение

Обязательно также нужно рассмотреть строение мозжечка. Итак, состоит данный орган из двух основных частей:

  1. Так называемого червя - продолговатой составляющей части.
  2. Двух полушарий.

Эти части - два полушария и червь - фрагментируются на определенные части, так называемые дольки, поперечными бороздами. Также нужно уточнить, что сам мозжечок состоит из белого и серого вещества. Последнее формирует парные ядра и кору мозжечка. Белое же вещество, проникая в массу серого, образует как бы ветвистые полоски, напоминающие в разрезе дерево.

Цифры

Каковы же вес и размер мозжечка?

  1. Размеры. Поперечник мозжечка составляет примерно 9-10 см. Переднезадняя часть - 3-4 см. Тут стоит сказать, что мозжечок занимает практически всю заднюю черепную ямку.
  2. Вес. Масса данного органа взрослого человека составляет примерно 120-160 г.

Вместе с изменением показателей можно проследить и развитие мозжечка. Например, к моменту рождения ребенка он менее развит, нежели полушария мозга. Но вот на протяжении первого года жизни развивается быстрее, чем иные части мозга в целом. Особенно активно изменяется мозжечок в период от 5 до 11 месяцев крохи, когда малыш учится ходить, двигаться.

Что касается веса, то у новорожденных мозжечок весит всего лишь 20 граммов. Примерно к третьему месяцу жизни вес его удваивается, к полугоду - утраивается, а к 9 месяцам становится больше в четыре раза. Далее активный рост мозжечка снижается. К шестилетнему возрасту ребенка он набирает вес 120 грамм, что равняется показателям веса этой части мозга взрослого человека.

Связи мозжечка

Рассматривая строение мозжечка, нужно также рассмотреть и все связи данного органа:

  1. Вестибулярные нервы и их ядра.
  2. Соматосенсорные пути, которые идут преимущественно из спинного мозга.
  3. Нисходящие пути, которые движутся от коры головного мозга. Все двигательные сигналы поступают в полушария мозжечка.

Исходя из этого, нужно также уточнить, что от мозжечка отходят три пары мозжечковых ножек:

  1. Нижние: направляются к продолговатому мозгу.
  2. Средние: идут к мосту.
  3. Верхние: направлены к четверохолмию.

Через эти части и происходит контакт мозжечка с иными важнейшими частями организма человека.

Кора

Также нужно рассмотреть и самые разные отделы мозжечка. Начать можно с его коры. Так, она состоит исключительно из серого вещества, размер ее 1-2,5 мм. Слои коры:

  1. Молекулярный, т.е. наружный. Тут размещаются исключительно мелкие нейроны.
  2. Средний, т.е. ганглионарный (слой нейронов грушевидной формы). Тут размещены также довольно-таки крупные нейроны, называемые еще клетками Пуркинье. Именно они интегрируют всю информацию, которая поступает от коры головного мозга в мозжечок.
  3. Внутренний, который еще называют зернистым. В данном слое располагаются крупные звездчатые нейроны, которые еще называются клетками Гольджи.

Извилины (или же листики) мозжечка - это еще одна составляющая данного органа. Это тонкая прослойка белого вещества, которое покрывает серое. Размер листиков составляет примерно 1-2,5 мм.

Функции

Рассматривая мозжечок, функции - вот о чем также нужно поговорить. Тут стоит уточнить, что данный орган не связан с рецепторами организма. Он имеет контакт исключительно с центральной нервной системой. К нему направлены множественные чувствительные пути, которые несут импульсы от мышц, связок, сухожилий, вестибулярных ядер. Сам же мозжечок может посылать импульсы всем отделам ЦНС.

Исследование функций

Если говорить о таком органе, как мозжечок, функции его исследовались путем его раздражения. Или же полного удаления и далее - изучения биоэлектрических явлений. Именно это исследовал итальянский ученый Лючиани. Последствия удаления он смог охарактеризовать триадой:

  1. Астазия.
  2. Атония.
  3. Астения.

Ученые, которые проводили подобные исследования, добавили еще один симптом: атаксия.

Все эксперименты проводились на собаках, а результаты были весьма занятными:

  1. Собака без мозжечка стоит на широко расставленных лапах, при этом немного покачиваясь из стороны сторону. Это астазия.
  2. Тонус сгибательных и разгибательных мышц нарушен - это атония.
  3. Все движения пса - резкие, размашистые, широкие. Данный симптом называется атаксия.
  4. Также собака не может регулировать свои движения. Она не попадает мордой в миску, все движения являются очень утомительными. Это астения.

Однако с течением времени все резкие движения у собаки без мозжечка сглаживаются. Она учится самостоятельно кушать, нормально ходит (дефекты видны только в том случае, если хорошо присмотреться).

Группа ученых также доказала, что у безмозжечковых собак нарушаются всевозможные вегетативные функции. Меняется сосудистый тонус, константа крови, трансформируется работа пищеварительного тракта.

Небольшой итог относительно функций

Рассмотрев вышеописанные исследования, можно сделать определенные выводы относительно того, чем же занимается мозжечок. Функции его следующие:

  1. Координация всех движений человека.
  2. Регуляция мышечного тонуса.
  3. Регуляция равновесия.

Тут стоит сказать, что данный орган имеет огромнейшее значение для жизнедеятельности млекопитающих. Ведь именно он помогает животным перемещаться в пространстве.

Диагностика проблем

Как понять, что у человека поврежден мозжечок головного мозга или же есть иные проблемы с данным органом? Для этого существует несколько методов исследования:

  1. Исследование походки человека, его движений. Тут могут взять пробы на выявление динамической и статической атаксии, изучают мышечный тонус. В таком случае актуальными будут два основным метода: плантография и ихнография. Будут рассмотрены походка и форма стоп человека по их отпечаткам (бумага ложится на металлическую основу, покрытую краской).
  2. Для уточнения диагноза или же характера повреждения могут использовать те же методы диагностики, что и при изучении головного мозга: рентгенография, эхоэнцефалография и т.д.

Симптоматика

Что же будет ощущать человек, у которого есть проблемы с мозжечком? Симптоматика в таком случае может быть следующей:

  1. Будет нарушена координация движений (атаксия).
  2. Человек будет быстро утомляться, небольшая физическая нагрузка будет требовать передышки (астения).
  3. Тонус мышц будет существенно понижен (атония).
  4. Человек не сможет делать плавных движений, они будут резкими. Станет невозможным длительное сокращение мышц (астазия).
  5. Также человек не сможет быстро менять направление движения, об этом ему придется задумываться (адиадохокинез).
  6. Точность движений больного будет нарушена (дисметрия).

Иная симптоматика, которая также наблюдается при поражении мозжечка:

  1. Тремор, т.е. дрожание (если есть нарушения связей с красными и зубчатыми ядрами).
  2. Может быть миоклония (подергивание мышц) глотки, языка, верхнего неба.
  3. Могут возникать маятникообразные рефлексы.
  4. Гипертезионные кризы (повышение внутричерепного давления). Возникает чаще всего вследствие опухолей, травм, кист и гематом мозжечка.

В качестве вывода хочется сказать о том, что пусть мозжечок и не очень большая часть головного мозга, однако она отвечает за множественные важнейшие функции в организме человека. В данный момент исследования еще ведутся, ведь современным ученым далеко не все известно об этой части мозга.

7.1. СТРОЕНИЕ, СВЯЗИ И ФУНКЦИИ МОЗЖЕЧКА

Мозжечок (cerebellum) располагается под дубликатурой твердой мозговой оболочки, известной как намет мозжечка (tentorium cerebelli), который разделяет полость черепа на два неравных пространства - супратенториальное и субтенториальное. В субтенториальном пространстве, дном которого является задняя черепная ямка, помимо мозжечка, находится ствол мозга. Объем мозжечка составляет в среднем 162 см 3 . Масса его варьирует в пределах 136-169 г.

Мозжечок находится над мостом и продолговатым мозгом. Вместе с верхним и нижним мозговыми парусами он составляет крышу IV желудочка мозга, дном которого является так называемая ромбовидная ямка (см. главу 9). Над мозжечком находятся затылочные доли большого мозга, отделенные от него наметом мозжечка.

В мозжечке различают два полушария (hemispherum cerebelli). Между ними в сагиттальной плоскости над IV желудочком мозга располагается филогенетически наиболее древняя часть мозжечка - его червь (vermis cerebelli). Червь и полушария мозжечка фрагментируются на дольки глубокими поперечными бороздами.

Мозжечок состоит из серого и белого веществ. Серое вещество формирует кору мозжечка и находящиеся в его глубине парные ядра nuclei cerebelli (рис. 7.1). Самые крупные из них - зубчатые ядра (nucleus dentatus) - расположены в полушариях. В центральной части червя имеются ядра шатра (nuclei

Рис. 7.1. Ядра мозжечка.

1 - зубчатое ядро; 2 - пробковидное ядро; 3 - ядро шатра; 4 - шаровидное ядро.

Рис. 7.2. Сагиттальный срез мозжечка и ствола мозга.

1 - мозжечок; 2 - «древо жизни»; 3 - передний мозговой парус; 4 - пластинка четверохолмия; 5 - водопровод мозга; 6 - ножка мозга; 7 - мост; 8 - IV желудочек, его сосудистое сплетение и шатер; 9 - продолговатый мозг.

fastigii), между ними и зубчатыми ядрами находятся шаровидные и пробковидные ядра (nuctei. globosus et emboliformis).

Ввиду того, что кора покрывает всю поверхность мозжечка и проникает в глубину его борозд, на сагиттальном разрезе мозжечка ткань его имеет рисунок листа, прожилки которого образованы белым веществом (рис. 7.2), составляющим так называемое древо жизни мозжечка (arbor vitae cerebelli). В основании древа жизни находится клиновидная выемка, являющаяся верхней частью полости IV желудочка; края этой выемки образуют его шатер. Крышей шатра служит червь мозжечка, а переднюю и заднюю его стенки составляют тонкие мозговые пластинки, известные под названием переднего и заднего мозговых парусов (vella medullare anterior et posterior).

Представляют интерес некоторые сведения об архитектонике мозжечка, дающие основания для суждения о функции его компонентов. У коры мозжечка есть два клеточных слоя: внутренний - зернистый, состоящий из мелких клеток-зерен, и наружный - молекулярный. Между ними расположен ряд крупных грушевидных клеток, носящих имя описавшего их чешского ученого И. Пуркинье (Purkinje I., 1787-1869).

В кору мозжечка импульсы поступают по проникающим в нее из белого вещества мшистым и ползучим волокнам, составляющим афферентные пути мозжечка. По мшистым волокнам импульсы, поступающие из спинного мозга,

вестибулярных ядер и ядер моста, передаются на клетки зернистого слоя коры. Аксоны этих клеток вместе с ползучими волокнами, проходящими через зернистый слой транзитом и несущими в мозжечок импульсы от нижних олив, доходят до поверхностного, молекулярного слоя мозжечка. Здесь аксоны клеток зернистого слоя и ползучие волокна Т-образно делятся, причем в молекулярном слое их разветвления принимают направление, продольное поверхности мозжечка. Импульсы, достигшие молекулярного слоя коры, пройдя через синаптические контакты, попадают на располагающиеся здесь же разветвления дендритов клеток Пуркинье. Далее они следуют по дендритам клеток Пуркинье к их телам, расположенным на границе молекулярного и зернистого слоев. Затем по аксонам тех же клеток, пересекающих зернистый слой, проникают в глубину белого вещества. Заканчиваются аксоны клеток Пуркинье в ядрах мозжечка. Главным образом в зубчатом ядре. Эфферентные импульсы, идущие от мозжечка по аксонам клеток, составляющих его ядра и принимающих участие в формировании мозжечковых ножек, покидают мозжечок.

Мозжечок имеет три пары ножек: нижнюю, среднюю и верхнюю. Нижняя ножка связывает его с продолговатым мозгом, средняя - с мостом, верхняя - со средним мозгом. Ножки мозга составляют проводящие пути, несущие импульсы к мозжечку и от него.

Червь мозжечка обеспечивает стабилизацию центра тяжести тела, его равновесие, устойчивость, регуляцию тонуса реципрокных мышечных групп, главным образом шеи и туловища, и возникновение при этом физиологических мозжечковых синергий, стабилизирующих равновесие тела.

Для успешного поддержания равновесия тела мозжечок постоянно получает информацию, проходящую по спиноцеребеллярным путям от проприоцепторов различных частей тела, а также от вестибулярных ядер, нижних олив, ретикулярной формации и других образований, участвующих в контроле за положением частей тела в пространстве. Большинство афферентных путей, идущих к мозжечку, проходит через нижнюю мозжечковую ножку, часть их расположена в верхней мозжечковой ножке.

Импульсы проприоцептивной чувствительности, идущие к мозжечку, как и другие чувствительные импульсы, следуя по дендритам первых чувствительных нейронов, достигают их тел, расположенных в спинномозговых узлах. В дальнейшем импульсы, идущие к мозжечку по аксонам тех же нейронов, направляются к телам вторых нейронов, которые располагаются во внутренних отделах основания задних рогов, формируя так называемые столбы Кларка. Аксоны их попадают в латеральные отделы боковых канатиков спинного мозга, где и образуют спиномозжечковые проводящие пути, при этом часть аксонов попадает в боковой столб той же стороны и формирует там задний спиномозжечковый путь Флексига (tractus spinocerebellaris posterior). Другая часть аксонов клеток задних рогов переходит на другую сторону спинного мозга и попадает в противоположный боковой канатик, образуя в нем передний спиномозжечковый путь Говерса (tractus spinocerebellaris anterior). Спиномозжечковые пути, увеличиваясь в объеме на уровне каждого спинального сегмента, поднимаются до продолговатого мозга.

В продолговатом мозге задний спиномозжечковый путь отклоняется в ла- теральном направлении и, пройдя через нижнюю мозжечковую ножку, проникает в мозжечок. Передний спиномозжечковый путь проходит транзитом через продолговатый мозг, мост мозга и достигает среднего мозга, на уровне которого совершает свой второй перекрест в переднем мозговом парусе и проходит в мозжечок через верхнюю мозжечковую ножку.

Таким образом, из двух спинномозговых путей один ни разу не подвергается перекресту (неперекрещенный путь Флексига), а другой переходит на противоположную сторону дважды (дважды перекрещенный путь Говерса). В результате оба проводят импульсы от каждой половины тела, преимущественно к гомолатеральной половине мозжечка.

Кроме спиномозжечковых путей Флексига, через нижнюю мозжечковую ножку импульсы к мозжечку проходят по вестибуломозжечковому пути (tractus vestibulocerebellaris), начинающемуся главным образом в верхнем вестибулярном ядре Бехтерева, и по оливомозжечковому пути (tractus olivocerebellaris), идущему от нижней оливы. Часть аксонов клеток тонкого и клиновидного ядер, не принимающих участие в формировании бульботаламического тракта, в виде наружных дугообразных волокон (fibre arcuatae externae) также попадает в мозжечок через нижнюю мозжечковую ножку.

Через свои средние ножки мозжечок получает импульсы из коры больших полушарий мозга. Эти импульсы проходят по корково-мостомозжечковым пу- тям, состоящим из двух нейронов. Тела первых нейронов располагаются в коре больших полушарий, главным образом в коре задних отделов лобных долей. Аксоны их проходят в составе лучистого венца, передней ножки внутренней капсулы и заканчиваются в ядрах моста. Аксоны клеток вторых нейронов, тела которых расположены в собственных ядрах моста, переходят на его противоположную сторону и составляют после перекреста среднюю мозжечковую ножку,

заканчивающуюся в противоположном полушарии мозжечка.

Часть импульсов, возникших в коре больших полушарий мозга, достигает противоположного полушария мозжечка, принося информацию не о произведенном, а лишь о намечаемом к выполнению активном движении. Получив такую информацию, мозжечок моментально высылает импульсы, корригирующие произвольные движения, главным образом, путем погашения инерции и наиболее рациональной регуляции тонуса реципрокных мышц - мышц-агонистов и антагонистов. В результате создается своеобразная эйметрия, делающая произвольные движения четкими, отточенными, лишенными нецелесообразных компонентов.

Пути, выходящие из мозжечка, состоят из аксонов клеток, тела которых формируют его ядра. Большинство эфферентных путей, в том числе пути, идущие от зубчатых ядер, покидают мозжечок через его верхнюю ножку. На уровне нижних бугров четверохолмия совершается перекрест эфферентных мозжечко- вых путей (перекрест верхних мозжечковых ножек Вернекинга). После перекреста каждый из них достигает красных ядер противоположной стороны среднего мозга. В красных ядрах мозжечковые импульсы переключаются на следующий нейрон и дальше движутся по аксонам клеток, тела которых заложены в красных ядрах. Эти аксоны формируются в красноядерно-спинномозговые проводящие пути (tracti rubro spinalis), пути Монакова, которые вскоре после выхода из красных ядер подвергаются перекресту (перекрест покрышки или перекрест Фореля), после чего спускаются в спинной мозг. В спинном мозге красноядерноспинномозговые пути располагаются в боковых канатиках; составляющие их волокна заканчиваются у клеток передних рогов спинного мозга.

Весь эфферентный путь от мозжечка до клеток передних рогов спинного мозга можно назвать мозжечково-красноядерно-спинномозговым (tractus cerebello-rubrospinalis). Он дважды совершает перекрест (перекрест верхних мозжечковых ножек и перекрест покрышки) и в итоге связывает каждое полушарие мозжечка с периферическими мотонейронами, находящимися в передних рогах гомолатеральной половины спинного мозга.

Из ядер червя мозжечка эфферентные пути идут в основном через нижнюю мозжечковую ножку к ретикулярной формации ствола мозга и вестибулярным ядрам. Отсюда по ретикулоспинномозговым и вестибулоспинномозговым путям, проходящим по передним канатикам спинного мозга, они также достигают клеток передних рогов. Часть импульсов, идущих от мозжечка, пройдя через вестибулярные ядра, попадает в медиальный продольный пучок, доходит до ядер III, IV и VI черепных нервов, обеспечивающих движения глазных яблок, и оказывает влияние на их функцию.

Подводя итог, необходимо подчеркнуть следующее:

1.Каждая половина мозжечка получает импульсы в основном а) из гомолатеральной половины тела, б) из противоположного полушария мозга, имеющего кортико-спинальные связи с той же половиной тела.

2.От каждой половины мозжечка эфферентные импульсы направляются к клеткам передних рогов гомолатеральной половины спинного мозга и к ядрам черепных нервов, обеспечивающих движения глазных яблок.

Такой характер мозжечковых связей позволяет понять, почему при поражении одной половины мозжечка мозжечковые расстройства возникают преимущественно в той же, т.е. гомолатеральной, половине тела. Это особенно отчетливо проявляется при поражении полушарий мозжечка.

7.2. ИССЛЕДОВАНИЕ ФУНКЦИЙ МОЗЖЕЧКА

И КЛИНИЧЕСКИЕ ПРОЯВЛЕНИЯ ЕГО ПОРАЖЕНИЯ

При поражении мозжечка характерны расстройства статики и координации движений, мышечная гипотония и нистагм.

Поражение мозжечка, прежде всего его червя, ведет к нарушениям статики - возможности поддержания стабильного положения центра тяжести тела человека, равновесия, устойчивости. При расстройстве указанной функции возникает статическая атаксия (от греч. ataxia - беспорядок, неустойчивость). Отмечается неустойчивость больного. Поэтому в положении стоя он широко расставляет ноги, балансирует руками. Особенно четко статическая атаксия выявляется при искусственном уменьшении площади опоры, в частности в позе Ромберга. Больному предлагается встать, плотно сдвинув ступни и слегка приподняв голову. При наличии мозжечковых расстройств отмечается неус- тойчивость больного в этой позе, тело его раскачивается, иногда его «тянет» в какую-то определенную сторону, при этом, если больного не поддержать, он может упасть. В случае поражения червя мозжечка больной обычно раскачивается из стороны в сторону и чаще падает назад. При патологии полушария мозжечка возникает тенденция к падению преимущественно в сторону патологического очага. Если расстройство статики выражено умеренно, его легче выявить в так называемой усложненной или сенсибилизированной позе Ромберга. Больному предлагается поставить ступни на одну линию, чтобы носок одной ступни упирался в пятку другой. Оценка устойчивости та же, что и в обычной позе Ромберга.

В норме, когда человек стоит, мышцы его ног напряжены (реакция опоры), при угрозе падения в сторону нога его на этой стороне перемещается в том же направлении, а другая нога отрывается от пола (реакция прыжка). При поражении мозжечка (главным образом червя) у больного нарушаются реакции

опоры и прыжка. Нарушение реакции опоры проявляется неустойчивостью больного в положении стоя, особенно в позе Ромберга. Нарушение реакции прыжка приводит к тому, что если врач, встав позади больного и подстраховывая его, толкает больного в ту или иную сторону, то больной падает при небольшом толчке (симптом толкания).

При поражении мозжечка походка больного обычно изменена в связи с развитием статолокомоторной атаксии. «Мозжечковая» походка во многом напоминает походку пьяного человека, поэтому ее иногда называют «походкой пьяного». Больной из-за неустойчивости идет неуверенно, широко расставляя ноги, при этом его «бросает» из стороны в сторону. А при поражении полушария мозжечка он отклоняется при ходьбе от заданного направления в сторону патологического очага. Особенно отчетлива неустойчивость при поворотах. Если атаксия оказывается резко выраженной, то больные полностью теряют способность владеть своим телом и не могут не только стоять и ходить, но даже сидеть.

Преимущественное поражение полушарий мозжечка ведет к расстройству его противоинерционных влияний, в частности к возникновению кинетической атаксии. Она проявляется неловкостью движений и особенно выражена при движениях, требующих точности. Для выявления кинетической атаксии проводятся пробы на координацию движений. Далее приводится описание некоторых из них.

Проба на диадохокинез (от греч. diadochos - последовательность). Больному предлагается закрыть глаза, вытянуть вперед руки и быстро, ритмично супинировать и пронировать кисти рук. В случае поражения полушария мозжечка движения кисти на стороне патологического процесса оказываются более размашистыми (следствие дисметрии, точнее - гиперметрии), в результате кисть начинает отставать. Это свидетельствует о наличии адиадохокинеза.

Пальценосовая проба. Больной с закрытыми глазами должен отвести руку, а затем, не торопясь, указательным пальцем дотронуться до кончика носа. В случае мозжечковой патологии рука на стороне патологического очага совершает избыточное по объему движение (гиперметрия), в результате чего больной промахивается. При пальценосовой пробе выявляется характерный для мозжечковой патологии мозжечковый (интенционный) тремор, амплитуда которого нарастает по мере приближения пальца к цели. Эта проба позволяет выявить и так называемую брадителекинезию (симптом узды): недалеко от цели движение пальца замедляется, иногда даже приостанавливается, а затем возобновляется вновь.

Пальце-пальцевая проба. Больному с закрытыми глазами предлагается широко развести руки и затем сближать указательные пальцы, стремясь попасть пальцем в палец, при этом, как и при пальценосовой пробе, выявляются интенционное дрожание и симптом узды.

Пяточно-коленная проба (рис. 7.3). Больному, лежащему на спине с закрытыми глазами, предлагают высоко поднять одну ногу и затем ее пяткой попасть в колено другой ноги. При мозжечковой патологии больной не может или ему трудно попасть пяткой в колено другой ноги, особенно выполняя пробу ногой, гомолатеральной пораженному полушарию мозжечка. Если все-таки пятка достигает колена, то предлагается провести ею, слегка касаясь передней поверхности голени, вниз, к голеностопному суставу, при этом в случае мозжечковой патологии пятка все время соскальзывает с голени то в одну, то в другую сторону.

Рис. 7.3. Пяточно-коленная проба.

Указательная проба: Больному предлагается несколько раз указательным пальцем попасть в резиновый наконечник молоточка, находящегося в руке обследующего. В случае мозжечковой патологии в руке пациента на стороне пораженного полушария мозжечка отмечается мимопопадание вследствие дисметрии.

Симптом Тома-Жюменти: Если пациент берет предмет, например стакан, он при этом чрезмерно раздвигает пальцы.

Мозжечковый нистагм. Подергивание глазных яблок при взгляде в стороны (горизонтальный нистагм) рассматривается как следствие интенционного дрожания глазных яблок (см. главу 30).

Расстройство речи: Речь теряет плавность, становится взрывчатой, фраг- ментированной, скандированной по типу мозжечковой дизартрии (см. главу 25).

Изменение почерка: В связи с расстройством координации движений руки почерк становится неровным, буквы деформированы, чрезмерно крупные (мегалография).

Пронаторный феномен: Больному предлагается удерживать вытянутые вперед руки в положении супинации, при этом на стороне пораженного полушария мозжечка вскоре происходит спонтанная пронация.

Симптом Гоффа-Шильдера: Если больной держит руки вытянутыми вперед, то на стороне пораженного полушария рука вскоре отводится кнаружи.

Имитационный феномен. Больной с закрытыми глазами должен быстро придать руке положение, аналогичное тому, которое обследующий перед этим придал другой его руке. При поражении полушария мозжечка гомолатеральная ему рука совершает движение, избыточное по амплитуде.

Феномен Дойникова. Пальцевой феномен. Сидящему пациенту предлагается супинированные кисти с разведенными пальцами положить на свои бедра и закрыть глаза. В случае поражения мозжечка на стороне патологического очага вскоре возникает спонтанное сгибание пальцев и пронация кисти и предплечья.

Симптом Стюарта-Холмса. Исследующий просит сидящего на стуле пациента сгибать супинированные предплечья и в то же время, взяв его руки за запястья, оказывает ему сопротивление. Если при этом неожиданно отпустить руки пациента, то рука на стороне поражения, сгибаясь по инерции, с силой ударит его в грудь.

Гипотония мышц. Поражение червя мозжечка ведет обычно к диффузной мышечной гипотонии. При поражении полушария мозжечка пассивные движения выявляют снижение мышечного тонуса на стороне патологического процесса. Гипотония мышц ведет к возможности переразгибания предплечья и голени (симптом Ольшанского) при пассивных движениях, к появлению симптомов «болтающейся» кисти или стопы при их пассивном встряхивании.

Патологические мозжечковые асинергии. Нарушения физиологических синергий при сложных двигательных актах выявляются, в частности, при следующих пробах (рис. 7.4).

1. Асинергия по Бабинскому в положении стоя. Если стоящий со сдвинутыми ногами пациент пытается прогнуться назад, запрокинув при этом голову, то в норме в таком случае происходит сгибание коленных суставов. При мозжечковой патологии в связи с асинергией это содружественное движение отсутствует, и больной, теряя равновесие, падает назад.

Рис. 7.4. Мозжечковая асинергия.

1 - походка больного с выраженной мозжечковой атаксией; 2 - наклон туловища назад в норме; 3 - при поражении мозжечка больной, наклоняясь назад, не может сохранить равновесия; 4 - выполнение пробы на мозжечковую асинергию по Бабинскому здоровым человеком; 5 - выполнение той же пробы больным с поражением мозжечка.

2. Асинергия по Бабинскому в положении лежа. Больному, лежащему на твердой плоскости с вытянутыми ногами, разведенными на ширину надплечий, предлагается скрестить руки на груди и затем сесть. При наличии мозжечковой патологии в связи с отсутствием содружественного сокращения ягодичных мышц (проявление асинергии) больной не может фиксировать на площади опоры ноги и таз, в результате ноги поднимаются и сесть ему не удается. Не следует переоценивать значимость этого симптома у пожилых пациентов, у людей с дряблой или ожиревшей брюшной стенкой.

Резюмируя изложенное, следует подчеркнуть многообразие и важность выполняемых мозжечком функций. Являясь частью комплексного регуляторного механизма с обратной связью, мозжечок выполняет роль координационного центра, обеспечивающего равновесие тела и поддержание мышечного тонуса. Как отмечает P. Duus (1995), мозжечок обеспечивает возможность выполнения дискретных и точных движений, при этом автор обоснованно считает, что мозжечок работает подобно компьютеру, отслеживая и координируя сенсорную информацию на входе и моделируя моторные сигналы на выходе.

7.3. МУЛЬТИСИСТЕМНЫЕ ДЕГЕНЕРАЦИИ

С ПРИЗНАКАМИ МОЗЖЕЧКОВОЙ ПАТОЛОГИИ

Мультисистемные дегенерации представляют собой группу нейродегенеративных заболеваний, общей особенностью которых является мультифокальный характер поражения с вовлечением в патологический процесс различных функциональных и нейромедиаторных систем мозга и в связи с этим полисистемность клинических проявлений.

7.3.1. Спиномозжечковые атаксии

К спиномозжечковым атаксиям относятся прогрессирующие наследственные дегенеративные заболевания, при которых в основном страдают структуры мозжечка, ствола головного мозга и проводящие пути спинного мозга, относящиеся главным образом к экстрапирамидной системе.

7.3.1.1. Наследственная атаксия Фридрейха

Наследственная болезнь, описанная в 1861 г. немецким невропатологом Н. Фридрейхом (Friedreich N., 1825-1882). Она наследуется по аутосомно-рецессивному типу или (реже) по аутосомно-доминантному типу с неполной пенетрантностью и вариабельной экспрессией гена. Возможны и спорадические случаи болезни.

Патогенез заболевания не уточнен. Отсутствует, в частности, представление о составляющем его основу первичном биохимическом дефекте.

Патоморфология. При патологоанатомических исследованиях выявляется выраженное истончение спинного мозга, обусловленное атрофическими процессами в его задних и боковых канатиках. Страдают, как правило, клиновидный (Бурдаха) и нежный (Голля) проводящие пути и спиномозжечковые пути Говерса и Флексига, а также перекрещенный пирамидный путь, содержащий

множество волокон, относящихся к экстрапирамидной системе. Дегенеративные процессы выражены также в мозжечке, в его белом веществе и ядерном аппарате.

Клинические проявления. Болезнь проявляется у детей или молодых людей в возрасте до 25 лет. С.Н. Давиденков (1880-1961) отмечал, что чаще клинические признаки болезни возникают у детей 6-10-летнего возраста. Первым признаком болезни обычно является атаксия. У больных возникают неуверенность, пошатывание при ходьбе, меняется походка (при ходьбе широко расставляют ноги). Походку при болезни Фридрейха можно назвать табетически- церебеллярной, так как ее изменения обусловлены сочетанием сенситивной и мозжечковой атаксии, а также обычно выраженным снижением мышечного тонуса. Характерны и расстройства статики, дискоординация в руках, интенционный тремор, дизартрия. Возможны нистагм, снижение слуха, элементы скандированности речи, признаки пирамидной недостаточности (сухожильная гиперрефлексия, стопные патологические рефлексы, иногда некоторое повышение мышечного тонуса), императивные позывы на мочеиспускание, снижение половой потенции. Иногда появляются гиперкинезы атетоидного характера.

Рано возникающее расстройство глубокой чувствительности ведет к прогрессирующему снижению сухожильных рефлексов: сначала на ногах, а затем на руках. Со временем формируется гипотрофия мышц дистальных отделов ног. Характерно наличие аномалий развития скелета. Прежде всего это проявляется наличием стопы Фридрейха: стопа укорочена, «полая», с очень высоким сводом. Основные фаланги ее пальцев разогнуты, остальные согнуты (рис. 7.5). Возможна деформация позвоночника, грудной клетки. Часто имеются проявления кардиопатии. Болезнь прогрессирует медленно, но неуклонно ведет к инвалидизации больных, которые со временем оказываются прикованными к постели.

Лечение. Патогенетическое лечение не раз- работано. Назначают препараты, улучшающие метаболизм в структурах нервной системы, общеукрепляющие средства. При выраженной деформации стоп показана ортопедическая обувь.

Рис. 7.5. Стопа Фридрейха.

7.3.1.2. Наследственная мозжечковая атаксия (болезнь Пьера Мари)

Это хроническое прогрессирующее наследственное заболевание, проявляющееся в возрасте 30-45 лет, с медленно нарастающими мозжечковыми расстройствами в сочетании с признаками пирамидной недостаточности, при этом характерны статическая и динамическая мозжечковая атаксия, интенционное дрожание, скандированная речь, сухожильная гиперрефлексия. Возможны клонусы, патологические пирамидные рефлексы, косоглазие, снижение зрения, сужение полей зрения в связи с первичной атрофией зрительных нервов и пигментной дегенерацией сетчатки. Течение болезни медленно прогрессирующее. Отмечаются уменьшение размеров мозжечка, дегенерация клеток

Пуркинье, нижних олив, спиномозжечковых путей. Наследуется по аутосомно-доминантному типу. Описал болезнь в 1893 г. французский невропатолог Р. Marie (1853-1940).

В настоящее время в понимании термина «болезнь Пьера Мари» нет единодушия, и вопрос о возможности выделения ее в самостоятельную нозологическую форму дискутабелен.

Лечение не разработано. Обычно применяются метаболически активные и общеукрепляющие, а также симптоматические средства.

7.3.2. Оливопонтоцеребеллярная дистрофия (болезнь Дежерина-Тома)

Это группа хронических прогрессирующих наследственных заболеваний, при которых развиваются дистрофические изменения главным образом в мозжечке, нижних оливах, в собственных ядрах моста и в связанных с ними структурах мозга.

При развитии заболевания в молодом возрасте около половины случаев наследуется по доминантному или рецессивному типу, остальные являются спорадическими. В спорадических случаях заболевания чаще встречаются проявления акинетико-ригидного синдрома и прогрессирующей вегетативной недостаточности. Средний возраст больного при проявлении в фенотипе наследственной формы заболевания - 28 лет, при спорадической - 49 лет, средняя продолжительность жизни - соответственно 14,9 и 6,3 года. При спорадической форме, кроме атрофии олив, моста и мозжечка, чаще обнару- живается поражение боковых канатиков спинного мозга, черного вещества и полосатого тела, голубоватого пятна в ромбовидной ямке IV желудочка мозга.

Характерны симптомы нарастающего мозжечкового синдрома. Возможны расстройства чувствительности, элементы бульбарного и акинетико-ригидного синдромов, гиперкинезы, в частности миоритмии в язычке и мягком нёбе, офтальмопарез, снижение остроты зрения, интеллектуальные расстройства. Болезнь описали в 1900 г. французские невропатологи J. Dejerine и A. Thomas.

Заболевание чаще дебютирует нарушениями при ходьбе - неустойчивостью, дискоординацией, возможны неожиданные падения. Эти нарушения могут быть единственным проявлением заболевания в течение 1-2 лет. В дальнейшем возникают и нарастают координаторные расстройства в руках: затруднены манипуляции с мелкими предметами, нарушается почерк, возникает интенционный тремор. Речь становится прерывистой, смазанной, с носовым оттенком и не соответствующим построению речи ритмом дыхания (пациент говорит так, как будто его душат). В этой стадии заболевания присоединяются проявления прогрессирующей вегетативной недостаточности, появляются признаки акинетико-ригидного синдрома. Иногда доминирующими для больного симптомами становятся дисфагия, приступы ночного удушья. Они развиваются в связи со смешанным парезом бульбарной мускулатуры и могут представлять угрозу для жизни.

В 1970 г. немецкие невропатологи B.W. Konigsmark и L.P. Weiner выделили 5 основных типов оливопонтоцеребеллярной дистрофии, отличающихся либо клинико-морфологическими проявлениями, либо типом наследования.

I тип (тип Менцеля). В возрасте 14-70 (чаще 30-40) лет проявляется атак- сией, дизартрией, дисфонией, гипотонией мышц, в поздней стадии - грубым тремором головы, туловища, рук, мышц, признаками акинетико-ригидного синдрома. Возможны патологические пирамидные знаки, парезы взора, наружная и внутренняя офтальмоплегия, расстройства чувствительности, деменция. Наследуется по аутосомно-доминантному типу. Как самостоятельную форму ее выделил в 1891 г. P. Menzel.

II тип (тип Фиклера-Винклера) . В возрасте 20-80 лет проявляется атаксией, снижением мышечного тонуса и сухожильных рефлексов. Наследуется по аутосомно-рецессивному типу. Возможны спорадические случаи.

III тип с ретинальной дегенерацией. Проявляется в детском или молодом (до 35 лет) возрасте атаксией, тремором головы и конечностей, дизартрией, признаками пирамидной недостаточности, прогрессирующим снижением зрения с исходом в слепоту; возможны нистагм, офтальмоплегия, иногда диссоциированные расстройства чувствительности. Наследуется по аутосомно-доминантному типу.

IV тип (тип Шута-Хаймакера). В возрасте 17-30 лет дебютирует мозжечковой атаксией или признаками нижнего спастического парапареза, в том и другом случае уже в ранней стадии болезни формируется сочетание этих проявлений, к которым в последующем присоединяются элементы бульбарного синдрома, пареза мимических мышц, расстройства глубокой чувствительности. Наследуется по доминантному типу.

V тип. Проявляется в возрасте 7-45 лет атаксией, дизартрией, признаками акинетико-ригидного синдрома и другими экстрапирамидными расстройствами, возможны прогрессирующие офтальмоплегия и деменция. Наследуется по доминантному типу.

7.3.3. Оливоруброцеребеллярная дегенерация (синдром Лежонна-Лермитта, болезнь Лермитта)

Заболевание характеризуется прогрессирующей атрофией мозжечка, преимущественно его коры, зубчатых ядер и верхних ножек мозжечка, нижних олив, красных ядер. Проявляется прежде всего статической и динамической атаксией, в дальнейшем возможны и другие признаки мозжечкового синдрома и поражения ствола мозга. Описали болезнь французские невропатологи Ж. Лермитт (Lhermitte J.J., 1877-1959) и Ж. Лежон (Lejonne J., род. в 1894 г.).

7.3.4. Мультисистемная атрофия

В последние десятилетия в самостоятельную форму выделено спорадическое, прогрессирующее нейродегенеративное заболевание, названное мультисистемной атрофией. Оно характеризуется сочетанным поражением базальных ганглиев, мозжечка, ствола мозга, спинного мозга. Основные клинические проявления: паркинсонизм, мозжечковая атаксия, признаки пирамидной и вегетативной недостаточности (Левин О.С., 2002). В зависимости от преобладания тех или иных особенностей клинической картины выделяются три типа мультисистемной атрофии.

1) оливопонтоцеребеллярный тип, характеризующийся преобладанием признаков мозжечковой атаки;

2) стрионигральный тип, при котором доминируют признаки паркинсонизма;

3) синдром Шая-Дрейджера, характеризующийся преобладанием в клинической картине признаков прогрессирующей вегетативной недостаточности с явлениями ортостатической артериальной гипотонии.

В основе мультисистемной атрофии лежит избирательная дегенерация определенных участков преимущественно серого вещества мозга с поражением нейронов и глиальных элементов. Причины дегенеративных проявлений в ткани мозга и сегодня остаются неизвестными. Проявления мультисистемной атрофии по оливопонтоцеребеллярному типу связаны с поражением клеток Пуркинье в коре мозжечка, а также нейронов нижних олив, ядер моста мозга, демиелинизацией и дегенерацией главным образом понтоцеребеллярных про- водящих путей.

Мозжечковые расстройства обычно представлены статической и динамической атаксией с нарушением локомоторных движений. Характерны неустойчивость в позе Ромберга, атаксия при ходьбе, дисметрия, адиадохокинез, интенционный тремор, могут быть нистагм (горизонтальный вертикальный, бьющий вниз), прерывистость и замедленность следящих движений взора, нарушение конвергенции глаз, скандированная речь.

Мультисистемная атрофия обычно возникает в зрелом возрасте и быстро прогрессирует. Диагностика основывается на клинических данных и характеризуется сочетанием признаков паркинсонизма, мозжечковой недостаточности и вегетативными расстройствами. Лечение заболевания не разработано. Длительность заболевания - в пределах 10 лет, завершается летальными исходом.

7.4. ДРУГИЕ ЗАБОЛЕВАНИЯ, СОПРОВОЖДАЮЩИЕСЯ ПРИЗНАКАМИ ПОРАЖЕНИЯ МОЗЖЕЧКА

Если у пациента выявляются признаки поражения мозжечка, то в большинстве случаев прежде всего надо думать о возможности опухоли мозжечка (астроцитома, ангиобластома, медуллобластома, метастатические опухоли) или рассеянного склероза. При опухоли мозжечка рано проявляются признаки внутричерепной гипертензии. При рассеянном склерозе обычно удается выявить, кроме мозжечковой патологии, клинические проявления поражения и других структур ЦНС, прежде всего зрительной и пирамидной систем. В классической неврологии обычно упоминаются характерная для рассеянного склероза триада Шарко: нистагм, интенционное дрожание и скандированная речь, а также синдром Нонне: расстройство координации движений, дисметрия, скандированная речь и мозжечковые асинергии.

Мозжечковые нарушения являются основными и при посттравматическом синдроме Манна, для которого характерны атаксия, дискоординации, асинергии, нистагм. Травма или инфекционные поражения могут обусловить мозжечковый синдром Гольдштейна-Райхмана: расстройства статики и координации движений, асинергия, интенционное дрожание, снижение мышечного тонуса, гиперметрия, мегалография, нарушение восприятия массы (веса) предмета, находящегося в руках.

Расстройства функции мозжечка могут иметь и врожденный характер, проявляясь, в частности, синдромом Зеемана: атаксией, задержкой развития речи, а в последующем мозжечковой дизартрией.

Врожденная мозжечковая атаксия проявляется задержкой развития двигательных функций ребенка (в возрасте 6 мес он не может сидеть, поздно начинает ходить, при этом походка атактическая), а также задержкой речи, длительным сохранением дизартрии, иногда отставанием психического развития, нередки проявления микрокрании. На КТ уменьшены полушария мозжечка. Примерно к 10 годам обычно наступает компенсация мозговых функций, которая, однако, может нарушаться под влиянием вредных экзогенных воздействий. Возможны и прогредиентные формы заболевания.

Проявлением врожденной гипоплазии мозжечка является и синдром Фан- кони-Тернера. Он характеризуется нарушениями статики и координации движений, нистагмом, которые обычно сопровождаются и задержкой умственного развития.

К врожденным относится и наследуемая по аутосомно-рецессивному типу редко встречающаяся болезнь Беттена: Для нее характерна врожденная мозжечковая атаксия, проявляющаяся на первом году жизни нарушениями статики и координации движений, нистагмом, расстройством координации взора, умеренной мышечной гипотонией. Возможны диспластические признаки. Ребенок поздно, иногда только на 2-3 году жизни, начинает держать голову, еще позже - стоять, ходить, говорить. Речь его изменена по типу мозжечковой дизартрии. Возможны вегетативно-висцеральные расстройства, проявления иммунодепрессии. Через несколько лет клиническая картина обычно стабилизируется, больной в какой-то степени адаптируется к имеющимся дефектам.

Спастической атаксией по предложению A. Bell и E. Carmichel (1939) названа наследуемая по аутосомно-доминантному типу мозжечковая атаксия, которая характеризуется дебютом заболевания в 3-4-летнем возрасте и проявляется со- четанием мозжечковой атаксии с дизартрией, сухожильной гиперрефлексией и повышением мышечного тонуса по спастическому типу, при этом возможны (но не являются облигатными признаками болезни) атрофия зрительных нервов, дегенерация сетчатки, нистагм, глазодвигательные расстройства.

По аутосомно-доминантному типу наследуется синдром Фельдмана (описал немецкий врач H. Feldmann, род. в 1919 г.): мозжечковая атаксия, интенционное дрожание и раннее поседение волос. Проявляется во втором десятилетии жизни и в дальнейшем медленно прогрессирует, приводя к инвалидности через 20-30 лет.

Поздняя мозжечковая атрофия, или синдром Тома, описанный в 1906 г. французским неврологом A. Thomas (1867-1963), проявляется обычно у лиц старше 50 лет прогрессирующей атрофией коры мозжечка. В фенотипе возникают признаки мозжечкового синдрома, прежде всего мозжечковой статической и локомоторной атаксии, скандированной речи, изменения почерка. В далеко зашедшей стадии возможны проявления пирамидной недостаточности.

Сочетанием мозжечковых расстройств с миоклонией характеризуется миоклоническая мозжечковая диссинергия Ханта, или миоклонус-атаксия, при этом симптомокомплексе в клинической картине проявляются интенционный тремор, миоклонии, возникающие в руках, а в дальнейшем приобретающие генерализованный характер, атаксия и диссинергия, нистагм, скандированная речь, снижение мышечного тонуса. Является следствием дегенерации ядер мозжечка, красных ядер и их связей, а также корково-подкорковых структур.

В далеко зашедшей стадии болезни возможны эпилептические припадки и деменция. Прогноз плохой. Относится к редким формам прогрессирующих наследственных атаксий. Наследуется по аутосомно-рецессивному типу. Проявляется обычно в молодом возрасте. Нозологическая самостоятельность симптомокомплекса оспаривается. Описал болезнь в 1921 г. американский невро- лог R. Hunt (1872-1937).

Среди дегенеративных процессов определенное место занимает мозжечковая дегенерация Холмса, или семейная церебеллооливарная атрофия, или прогрессирующая атрофия системы мозжечка, преимущественно зубчатых ядер, а также красных ядер, при этом в верхней ножке мозжечка выражены проявления демиелинизации. Характерны статическая и динамическая атаксия, асинергии, нистагм, дизартрия, снижение мышечного тонуса, мышечная дистония, тремор головы, миоклонии. Почти одновременно появляются эпилептические припадки. Интеллект обычно сохранен. На ЭЭГ отмечается пароксимальная дизритмия. Заболевание признается наследственным, но тип его наследования не уточнен. Описал болезнь в 1907 г. английский невропатолог G. Holmes

(1876-1965).

Алкогольная мозжечковая дегенерация - следствие хронической алкогольной интоксикации. Происходит поражение преимущественно червя мозжечка, при этом прежде всего проявляются мозжечковая атаксия и нарушение координации движений ног, тогда как движения рук, глазодвигательные и речевые функции оказываются нарушенными в значительно меньшей степени. Обычно это заболевание сопровождается выраженным снижением памяти в сочетании с полиневропатией.

проявляется мозжечковой атаксией, которая иногда может быть единственным клиническим симптомом, обусловленным злокачественной опухолью, без локальных признаков, указывающих на место ее возникновения. Паранеопластическая мозжечковая дегенерация может быть, в частности, вторичным проявлением рака грудной железы или яичников.

Синдром Барракера-Бордаса-Руиса-Лара проявляется мозжечковыми расстройствами, возникающими в связи с быстро прогрессирующей атрофией мозжечка. Описан синдром у больных раком бронхов, сопровождающимся общей интоксикацией, современным испанским врачом L. Barraquer-Bordas (род. в 1923 г.).

Редко встречается рецессивная Х-хромосомная атаксия - наследственная болезнь, проявляющаяся практически только у мужчин медленно прогрессирующей мозжечковой недостаточностью. Передается по рецессивному, сцепленному с полом типу.

Заслуживает внимания и семейная пароксизмальная атаксия, или периодическая атаксия. Дебютирует чаще в детском возрасте, но может проявляться и позже - до 60 лет. Клиническая картина сводится к приступообразным проявлениям нистагма, дизартрии и атаксии, снижению мышечного тонуса, головокружению, тошноте, рвоте, головной боли, длительностью от нескольких минут до 4 нед.

Приступы семейной пароксизмальной атаксии могут быть спровоцированы эмоциональным стрессом, физическим переутомлением, лихорадочным состоянием, приемом алкоголя, при этом между приступами очаговая неврологическая симптоматика в большинстве случаев не выявляется, но иногда возможны нистагм и легкие мозжечковые симптомы.

Морфологическим субстратом болезни признается атрофический процесс преимущественно в передней части червя мозжечка. Впервые описал заболевание в 1946 г. M. Parker. Наследуется по аутосомно-доминантному типу. В 1987 г. при семейной пароксизмальной атаксии обнаружено снижение активности пируватдегидрогеназы лейкоцитов крови до 50-60% от нормального уровня. В 1977 г. R. Lafrance и соавт. обратили внимание на высокий профилактический эффект диакарба, позже с целью лечения семейной пароксизмальной атаксии был предложен флунаризин.

Острая мозжечковая атаксия, или синдром Лейдена-Вестфаля, представляет собой хорошо очерченный симптомокомплекс, являющийся параинфекционным осложнением. Возникает чаще у детей через 1-2 нед после перенесенной общей инфекции (грипп, сыпной тиф, сальмонеллез и др.). Характерны грубая статическая и динамическая атаксия, интенционное дрожание, гиперметрия, асинергии, нистагм, скандированная речь, снижение мышечного тонуса. В цереброспинальной жидкости выявляется лимфоцитарный плеоцитоз, умеренное повышение белка. В начале заболевания возможны головокружение, расстройства сознания, судороги. На КТ и МРТ патологии не выявляется. Течение доброкачественное. В большинстве случаев через несколько недель или месяцев - полное выздоровление, иногда - резидуальные расстройства в виде легкой мозжечковой недостаточности.

Болезнь Мари-Фуа-Алажуанина - поздняя симметричная корковая атрофия мозжечка с преимущественным поражением грушевидных нейронов (клетки Пуркинье) и зернистого слоя коры, а также орального отдела червя мозжечка и дегенерацией олив. Проявляется у лиц 40-75 лет расстройством равновесия, атаксией, нарушением походки, координаторными расстройствами и снижением мышечного тонуса, главным образом в ногах; интенционное дрожание в руках при этом выражено незначительно. Нарушения речи возможны, но не относятся к облигатным признакам заболевания. Болезнь описали в 1922 г. французские невропатологи P. Marie, Ch. Foix и Th. Alajouanine. Заболевание спорадическое. Этиология заболевания не выяснена. Имеются мнения о провоцирующей роли интоксикации, прежде всего злоупотребления алкоголем, а также гипоксии, наследственной отягощенности. Клиническая картина подтверждается данными КТ головы, при которой выявляется выраженное уменьшение объема мозжечка на фоне диффузных атрофических процессов в головном мозге. Кроме того, характерным признается высокий уровень в плазме крови аминотрансфераз (Пономарева Е.Н. и др., 1997).

Функции мозжечка сходны у различных биологических видов, включая человека. Это подтверждается их нарушением при повреждении мозжечка в эксперименте у животных и результатами клинических наблюдений при заболеваниях, поражающих мозжечок у человека. Мозжечок представляет собой мозговой центр, который имеет в высшей степени важное значение для координации и регуляции двигательной активности и поддержания позы. Мозжечок работает главным образом рефлекторно, поддерживая равновесие тела и его ориентацию в пространстве. Также он играет важную роль (особенно у млекопитающих) влокомоции(перемещении в пространстве).

Соответственно главными функциями мозжечка являются:

    координация движений

    регуляция равновесия

    регуляция мышечного тонуса

    обеспечение плавности, ритмичности – тактики движений.

Промежуточный мозг

Промежу́точный мозг (Diencephalon) - отдел головного мозга.

В эмбриогенезе промежуточный мозг образуется на задней части первого мозгового пузыря. Спереди и сверху промежуточный мозг граничит с передним, а снизу и сзади - со средним мозгом.

Структуры промежуточного мозга окружают третий желудочек.

Промежуточный мозг подразделяется на:

    Таламический мозг (Thalamencephalon)

    Подталамическую область или гипоталамус (hypothalamus)

    Третий желудочек, который является полостью промежуточного мозга

Функции промежуточного мозга

    Движение, в том числе и мимика.

    Обмен веществ, температура тела, потребление пищи, состояние сна и бодрствования.

    Поведение в экстремальных ситуациях, проявления ярости, агрессии, боли и удовольствия.

    Отвечает за чувство жажды, голода, насыщения.

    Инстинктивные формы поведения (пищевое, сексуальное, игровое и т.д.).

    Все виды чувствительности, кроме обоняния, в том числе ощущения боли, температуры, легкого прикосновения и давления, а также участвует в эмоциональных процессах и работе памяти.

    Кратковременная и долговременная модально-неспецифическая память.

Лимбическая система является связующим звеном между корой больших полушарий и телом. Единство с телом вызывает физические признаки эмоций (краска стыда, улыбка радости). Лимбическая система производит эмоции, которые, в свою очередь, либо усиливают, либо ослабляют иммунную систему. Они же непосредственно влияют на качество обуче­ния, поэтому крайне важно познавательные процессы детей подкреплять положительными эмоциями.

Лимбическая система состоит из пяти основных структур: таламуса, гипоталамуса, миндалевидного тела, гиппокампа и базального ганглия.

Таламус работает как «распределительная станция» для всех поступающих в мозг ощущений, кроме обонятельных. Он также передает двигательные импульсы из коры голов­ного мозга по спинному мозгу на мускулатуру. Кроме того, таламус распознает ощущения боли, температуры, легкого прикосновения и давления, а также участвует в эмоциональных процессах и работе памяти.

Гипоталамус контролирует работу гипофиза, нормальную температуру тела, потребление пищи, состояние сна и бодрствования. Он также является центром, ответственным за поведение в экстремальных ситуациях, проявления ярости, агрессии, боли и удовольствия.

Миндалевидное тело связано с зонами мозга, ответственными за обработку познавательной и чувственной информации, а также с зонами, имеющими отношение к комбинациям эмоций. Миндалевидное тело координирует реакции страха или беспокойства, вызванные внутренними сигналами.

Гиппокамп использует сенсорную информацию, поступающую из таламуса, и эмоциональную из гипоталамуса для формирования кратковременной памяти. Кратковременная память, активизируя нервные сети гиппокампа, может далее перейти в «долговременное хранилище» и стать долговременной памятью для всего мозга.

Базалъный ганглий управляет нервными импульсами между мозжечком и передней долей мозга и тем самым помогает контролировать движения тела. Он способствует контролю за тонкой моторикой лицевых мышц и глаз, отражающих эмоциональные состояния. Базальный ганглий связан с передней долей мозга через черную субстанцию. Он координирует мыслительные процессы, участвующие в планировании порядка и слаженности предстоящих действий во времени.

Обработка всей эмоциональной и познавательной информации в лимбической системе имеет биохимическую природу: происходит выброс определенных нейротрансмиттеров (от лат. transmitto - передаю; биологические вещества, которые обусловливают проведение нервных импульсов). Если познавательные процессы протекают на фоне положительных эмоций, то вырабатываются такие нейротрансмиттеры, как гаммааминомасляная кислота, ацетилхолин, интерферон и интерклейкины. Они активизируют мышление и делают запоминание более эффективным. Если же процессы обучения построены на негативных эмоциях, то высвобождаются адреналин и кортизол, которые сни­жают способность к учению и запоминанию

Развитие лимбической системы позволяет ребенку устанавливать социальные связи. В возрасте от 15 месяцев до 4 лет в гипоталамусе и миндалевидном теле генерируются примитивные эмоции: ярость, страх, агрессия. По мере развития нервных сетей образуются связи с кортикальными (корковыми) отделами височных долей, ответственными за мышление, появляются более сложные эмоции с социальным компонентом: злость, печаль, радость, огорчение. При дальнейшем развитии нервных сетей формируются связи с передними отделами мозга и развиваются такие тонкие чувства, как любовь, альтруизм, сопереживание, счастье.

По мере дальнейшего развития лимбической системы нервные сети соединяют сенсорные (зрительные, слуховые, обонятельные, вкусовые, кинестетические) и моторные схемы с эмоциями и образуют память. Она конструируется из нервных путей, которые связываются в нервные схемы. Эти схемы постоянно модифицируются и дополняются в бесконечном числе комбинаций. Они могут быть модифицированы, реорганизованы или сокращены для большей эффективности. Схемы связаны с мозговыми центрами, где происходит обработка специализированной сенсорной информации. Например, затылочная область мозга отвечает за зрительную информацию, височная - за слуховую. Необходимо помнить, что 90% основных схем формируются за первые пять лет жизни ребенка, как и основной шаблон нервных сетей , который затем может достраиваться. Именно этот шаблон является материальной основой индивидуальности мышления, памяти, способностей, поведения . Схемы каждого человека специфичны, уникальны и не повторяют одна другую.

По мере формирования лимбической системы создаются предпосылки для развития воображения . Альберт Эйнштейн считал, что «воображение важнее, чем знание, так как знание говорит обо всем, что есть, а воображение - обо всем, что будет». Воображение развивается на базе синтеза моторно-сенсорных схем, эмоций и памяти (К. Ханнафорд).

КОРА ГОЛОВНОГО МОЗГА ЧЕЛОВЕКА - НЕОКОРТЕКС

Если расправить складки неокортекса, он займет площадь в 2500 см 2 . Каждые 60 секунд он использует более 0,5 л крови и ежедневно сжигает 400 ккал. Неокортекс составляет только 25% общего объема головного мозга, однако содержит примерно 85% всех нейронов. Масса головного мозга составляет всего 2% от общего веса тела человека, однако для собственного кровоснабжения использует 20% всего кровотока.

Неокортекс состоит из серого вещества, немиелинизированных клеточных тел нейронов (миелинизация - процесс образования миелиновой оболочки, покрывающей быстродействующие проводящие пути центральной нервной системы. Миелиновые оболочки повышают точность и скорость передачи импульсов в нервной системе).

Тела нейронов обладают неограниченными возможностями формирования новых дендритов (ветвящийся отросток, воспринимающий сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей; проводит нервные импульсы к телу нейрона) и реорганизации дендритных сетей под воздействием нового опыта, приобретаемого в течение жизни. Установлено, что нервные сети в неокортексе взрослого человека содержат более квадриллиона (миллиона миллиардов) связей и могут обрабатывать до 1000 битов новой информации в секунду. Это значит, что число сигналов, которое может одновременно передаваться через синапсы (соединения) мозга, превышает число атомов в известной области Вселенной.

Учение о структурных особенностях строения коры называется архитектоникой .

Клетки коры больших полушарий менее специализированы, чем нейроны других отделов мозга; тем не менее определенные их группы анатомически и физиологически тесно связаны с теми или иными специализированными отделами мозга . Микроскопическое строение коры головного мозга неодинаково в разных ее отделах. Эти морфологические различия коры позволили выделить отдельные корковые цитоархитектонические поля. Имеется несколько вариантов классификаций корковых полей. Большинство исследователей выделяет 50 цитоархитектонических полей (например, по Бродману).

НЕ СМЕШИВАТЬ ПОНЯТИЕ ЦИТОАРХИТЕКТОНИЧЕСКИХ ПОЛЕЙ С ПОЛЯМИ КОРЫ ГОЛОВНОГО МОЗГА (ПЕРВИЧНЫМИ, ВТОРИЧНЫМИ И ТРЕТИЧНЫМИ ПОЛЯМИ).

Микроскопическое строение коры довольно сложное. Кора состоит из ряда слоев клеток и их волокон.

Основной тип строения коры шестислойный, однако он не везде однороден. Существуют участки коры, где один из слоев выражен весьма значительно, а другой - слабо. В других областях коры намечается подразделение некоторых слоев на подслои и т.д.

Установлено, что области коры, связанные с определенной функцией, имеют сходное строение. Участки коры, которые близки у животных и человека по своему функциональному значению, имеют определенное сходство в строении. Те участки мозга, которые выполняют чисто человеческие функции (речь), имеются только в коре человека, а у животных, даже у обезьян, отсутствуют.

Морфологическая и функциональная неоднородность коры головного мозга позволила выделить центры зрения, слуха, осязания и т.д., которые имеют свою определенную локализацию. Однако неверно говорить о корковом центре как о строго ограниченной группе нейронов. Необходимо помнить, что специализация участков коры формируется в процессе жизнедеятельности. В раннем детском возрасте функциональные зоны коры перекрывают друг друга, поэтому их границы расплывчаты и нечетки. Только в процессе обучения, накопления собственного опыта в практической деятельности происходит постепенная концентрация функциональных зон в отделенные друг от друга центры .

ГОРИЗОНТАЛЬНЫЕ И ВЕРТИКАЛЬНЫЕ СВЯЗИ МОЗГА

Белое вещество больших полушарий состоит из нервных проводников. В соответствии с анатомическими и функциональными особенностями волокна белого вещества делят на ассоциативные, комиссуральные и проекционные. Ассоциативные волокна объединяют различные участки коры внутри одного полушария. Эти волокна бывают короткие и длинные. Короткие волокна обычно имеют дугообразную форму и соединяют соседние извилины. Длинные волокна соединяют отдаленные участки коры.

Комиссуральными принято называть те волокна, которые соединяют топографически идентичные участки правого и левого полушарий. Комиссуральные волокна образуют три спайки: переднюю белую спайку, спайку свода, мозолистое тело. Передняя белая спайка соединяет обонятельные области правого и левого полушарий. Спайка свода соединяет между собой гиппокамповые извилины правого и левого полушарий. Основная же масса комиссуральных волокон проходит черезмозолистое тело , соединяя между собой симметричные участки обоих полушарий головного мозга.

Проекционными принято называть те волокна, которые связывают полушария головного мозга с нижележащими отделами мозга - стволом и спинным мозгом. В составе проекционных волокон проходят проводящие пути, несущие афферентную (чувствительную) и эфферентную (двигательную) информацию.

Проводящие пути мозга

В белом веществе ствола головного мозга и спинном мозге располагаются проводники восходящего и нисходящего направлений. Нисходящие пути проводят к рефлекторным аппаратам спинного мозга двигательные импульсы из коры головного мозга (пирамидный путь), а также импульсы, способствующие осуществлению двигательного акта (экстрапирамидные пути) из различных отделов подкорковых образований и ствола головного мозга.

Нисходящие двигательные проводники заканчиваются на периферических мотонейронах спинного мозга посегментно. Вышележащие отделы центральной нервной системы оказывают существенное влияние на рефлекторную деятельность спинного мозга. Они затормаживают рефлекторные механизмы собственного аппарата спинного мозга. Так, при патологическом выключении пирамидных путей собственные рефлекторные механизмы спинного мозга растормаживаются. При этом усиливаются рефлексы спинного мозга и тонус мышц.

Кроме того, выявляются защитные рефлексы и такие, которые в норме наблюдаются только у новорожденных и детей первых месяцев жизни.

Восходящие пути передают из спинного мозга чувствительные импульсы с периферии (с кожи, слизистых оболочек, мышц, суставов и т.д.) к вышележащим отделам головного мозга. В конце концов эти импульсы достигают коры головного мозга. С периферии импульсы приходят в кору головного мозга двумя путями: по так называемым специфическим системам проводников (через восходящий проводник и зрительный бугор ) и по неспецифической системе - через ретикулярную формацию (сетевидное образование) ствола головного мозга. Все чувствительные проводники отдают коллатерали ретикулярной формации. Ретикулярная формация активирует кору головного мозга , распространяя импульсы по разным отделам коры. Ее влияние на кору оказывается диффузным, тогда как специфические проводники посылают импульсы лишь в определенные проекционные зоны.

Кроме того, ретикулярная формация участвует в регуляции разнообразных вегетативно-висцеральных и сенсомоторных функций организма. Таким образом, вышележащие отделы мозга находятся под влиянием спинного мозга.

Психические процессы осуществляются сложными системами - совместно работающими зонами коры и нижележащими нервными структурами . Эти низшие структуры участвуют в работе коры, регулируя и обеспечивая ее тонус. Данные, полученные в современных анатомических и физиологических исследованиях, позволяют сформулировать принцип вертикального строения функциональных систем мозга : каждая форма поведения обеспечивается разными уровнями нервной системы, связанными друг с другом как горизонтальными (транскортикальными – комиссуральными и ассоциативными) связями, так и вертикальными (сверху-вниз и снизу-вверх - проекционными). Все это превращает мозг в саморегулирующуюся систему .

ассоциативные волокна; комиссуральные волокна; проекционные волокна

Мозжечок ("маленький мозг") является структурой, которая находится в задней части мозга, в основе затылочной и коры. Хоть мозжечок и составляет примерно 10% от объема мозга, он содержит более 50% от общего количества нейронов в нем.

Издавна мозжечок считали моторной структурой человека, потому что его повреждение приводит к ухудшениям координации движений, равновесия тела.

На рисунке выше изображен мозг. Мозжечок обозначен стрелкой.

Вот так выглядит малый мозг в разрезе.

Мозжечок головного мозга выполняет следующие функции.

Поддержание равновесия и осанки

Мозжечок очень важен для поддержания равновесия в теле человека. Он получает данные из вестибулярных рецепторов и проприорецепторов, после чего модулирует команды для моторных нейронов, как бы предупреждая их об изменениях в положении тела или лишней нагрузке на мышцы. Люди с повреждениями мозжечка страдают от расстройства равновесия.

Координация движений

В большинстве движений тела участвуют несколько различных групп мышц, взаимодействующих вместе. Именно мозжечок отвечает за координацию движений в нашем теле.

Моторное обучение

Мозжечок имеет большое значение для нашего обучения. Он играет важную роль в адаптации и настройке моторных программ, чтобы сделать движения точными через процесс проб и ошибок (например, обучение бейсболу и другим играм, для которых требуется движение тела).

Познавательные процессы (когнитивные)

Хотя мозжечок больше всего рассматривают с точки зрения его вкладов в устройство управления движением, он также вовлечен в определенные познавательные функции, например, такие как язык. Эти головного мозга до сих пор не изучены настолько хорошо, чтобы о них можно было рассказать подробнее.

Таким образом, мозжечок исторически рассматривают как часть моторной системы, но его функции на этом не заканчиваются.

Строение мозжечка

Он состоит из двух главных частей, соединенных червем (промежуточной зоной). Эти две части заполнены белым веществом, покрытым тонким слоем серого коркового вещества (кора мозжечка). Также в присутствуют небольшие скопления серого вещества - ядра. По краю червя располагается небольшая частичка - миндалина мозжечка. Она участвует в координации движений, помогает поддерживать равновесие. Предлагаем подробнее рассмотреть строение мозжечка.

Мозжечок делится на множество маленьких частей, у каждой из которых есть свое название, но в статье мы подробнее рассмотрим только самые большие части.

На рисунке изображен мозжечок. Цифрами обозначены полушария мозжечка и не только:

1 - передняя доля; 2 - средний мозг; 3 - варолиев мост; 4 - клочково-узелковая доля; 5 - заднебоковая трещина; 6 - задняя доля.

Цифрам соответствуют:

1 - червь мозжечка; 2 - передняя доля; 3 - основная трещина; 4 - полушарие; 5 - заднебоковая трещина; 6 - клочково-узелковая доля; 7 - задняя доля.

Части мозжечка

Две главные трещины, бегущие медиолатерально, делят мозжечковую кору на три основных доли. Заднебоковая трещина отделяет клочково-узелковую долю от мозгового тела, а основная трещина делит мозговое тело на переднюю и заднюю доли.

Мозжечок головного мозга также делится сагиттально на три зоны - два полушария и средний отдел (червя). Червь является промежуточной зоной между двух полушарий (четких морфологических границ между промежуточной зоной и боковыми полушариями нет, между червем и полушариями находится миндалина мозжечка).

Мозжечковые ядра

Все сигналы мозжечок головного мозга передает не без помощи мозжечковых глубоких ядер. Таким образом, повреждение мозжечковых ядер имеет тот же самый эффект, как и полное повреждение всего мозжечка. Есть несколько видов ядер:

  1. Ядра шатра - наиболее медиально расположенные ядра мозжечка. Они получают сигналы из афферентов (нервных импульсов) мозжечка, несущих вестибулярную, соматосенсорную, слуховую и визуальную информацию. Локализуются в основном в белом веществе червя.
  2. Следующий вид ядер мозжечка включает в себя сразу два типа ядер - шаровидные и пробковидные. Они также получают сигналы от промежуточной зоны (червя) и афферентов мозжечка, которые несут спинную, соматосенсорную, слуховую и визуальную информацию.
  3. Зубчатые ядра являются крупнейшими в мозжечке и располагаются сбоку от предыдущего типа. Они получают сигналы из боковых полушарий и афферентов мозжечка, которые несут информацию от коры головного мозга (с помощью ядер моста головного мозга).
  4. Вестибулярные ядра находятся за пределами мозжечка, в Следовательно, они не являются строго ядрами мозжечка, но считаются функционально эквивалентными этим ядрам, потому что их структуры идентичны. Вестибулярные ядра получают сигналы из клочково-узелковой доли и от вестибулярного лабиринта.

В дополнение к этим сигналам все ядра и все части мозжечка получают специальные испульсы от нижней оливы продолговатого мозга.

Уточним, что анатомическое местоположение мозжечковых ядер соответствуют областям коры, из которых они получают сигналы. Таким образом, в середине расположенные ядра шарта получают импульсы из червя, расположенного посередине; боковые шаровидные и пробковидные ядра получают информацию из боковой части промежуточной зоны (того же червя); и самое боковое зубчатое ядро получает сигналы от одного или другого полушария мозжечка.

Ножки мозжечка

Информация к ядрам и от ядер мозжечка передается с помощью ножек. Есть два типа пути - афферентные и эфферентные (идущие к мозжечку и от него, соответственно).

  1. Нижняя мозжечковая ножка (также называемая веревочным телом) в основном содержит афферентные волокна от продолговатого мозга, а также эфференты вестибулярных ядер.
  2. Средняя мозжечковая ножка (или плечико моста) в основном содержит афферентные волокна от ядер варолиевого моста.
  3. Верхняя мозжечковая ножка (или соединительное плечико) в первую очередь содержит эфферентные волокна от ядер мозжечка, а также некоторые афферентные волокна от спиноцеребеллярных трактов.

Таким образом, информация в мозжечок передается в основном через нижнюю и среднюю мозжечковые ножки, а из мозжечка передается в первую очередь через верхнюю мозжечковую ножку.

Здесь более подробно изображены части мозжечка. Рисунок захватывает даже строение точнее, строение среднего мозга. Цифрами обозначены:

1 - ядра шатра; 2 - шаровидные и пробковидные ядра; 3 - зубчатые ядра; 4 - грубокие ядра мозжечка; 5 - верхнее двухолмие среднего мозга; 6 - нижнее двухолмие; 7 - верхний мозговой парус; 8 - верхняя мозжечковая ножка; 9 - средняя мозжечковая ножка; 10 - нижняя мозжечковая ножка; 11 - бугорок тонкого ядра; 12 - барьер; 13 - низ четвертого желудочка.

Функциональные подразделения мозжечка

Анатомические подразделения, описанные выше, соответствуют трем основным функциональным подразделениям мозжечка.

Архицеребеллум (вестибулоцеребеллум). Эта часть включает клочково-узелковую долю и ее связи с боковыми вестибулярными ядрами. В филогенезе вестибулоцеребеллум является старейшей частью мозжечка.

Палеоцеребеллум (спиноцеребеллум). Он включает в себя промежуточную зону коры мозжечка, а также ядра шатра, шаровидные и пробковидные ядра. Что можно понять по названию, он получает основные сигналы от спиноцеребеллярных трактов. Он участвует в интеграции сенсорной информации с моторных команд, производя адаптацию двигательной координации.

Неоцеребеллум (понтоцеребеллум). Неоцеребеллум является крупнейшим функциональным разделом, включающим боковые полушария мозжечка и зубчатые ядра. Его название происходит от обширных связей с корой головного мозга с помощью ядер моста (афферентов) и вентролатерального таламуса (эфференты). Он участвует в планировании времени движения. Кроме того, этот раздел участвует в мозжечка головного мозга.

Гистология коры мозжечка

Кора мозжечка делится на три слоя. Внутренний слой, гранулярный, изготовлен из 5 х 1010 малых, плотно соединенных клеток в виде гранул. Средний слой, слой клеток Пуркинье, состоит из одного ряда больших молекулярный, выполнен из аксонов зернистых клеток и дендритов клеток Пуркинье, а также нескольких других типов клеток. Слой клеток Пуркинье образует границу между гранулярным и молекулярным слоями.

Гранулярные клетки. Очень маленькие, плотно упакованные нейроны. Мозжечковые гранулярные клетки составляют больше чем половину нейронов во всем мозге. Эти клетки получают информацию от мшистых волокон и проектируют ее к клеткам Пуркинье.

Клетки Пуркинье. Они являются одним из наиболее ярких типов клеток в головном мозге млекопитающих. Их дендриты образуют большой веер мелко разветвленных процессов. Примечательно, что это дендритное дерево почти двумерное. Кроме того, все клетки Пуркинье ориентированы параллельно. Это устройство имеет важные функциональные соображения.

Другие типы клеток. В дополнение к главным типам (гранулярные и клетки Пуркинье) мозжечковая кора также содержит различные типы межнейрона, включая клетку Гольджи, корзинчатую и звездообразную клетку.

Передача сигналов

У мозжечковой коры есть относительно простой, стереотипный образец возможности передачи сигнала, который идентичен всюду по всему мозжечку. Вход информации в мозжечок может быть осуществлен двумя способами:

  1. Мшистые волокна производятся в ядрах моста, спинном мозгу, стволе мозга и вестибулярных ядрах, они передают сигналы мозжечковым ядрам и гранулированным клеткам в мозжечковой коре. Их называют мшистыми волокнами из-за появления «хохолков» при их контактах с гранулированными клетками. Каждое мшистое волокно иннервирует сотни зернистых клеток. Гранулированные клетки посылают аксоны вверх по направлению к поверхности коры. Каждый аксон разветвляется в молекулярном слое, посылая сигналы в разных направлениях. Эти сигналы идут по волокнам, которые называют параллельными, потому что они идут параллельно складкам коры мозжечка, в пути производя синапсы с клетками Пуркинье. Каждое параллельное волокно вступает в контакт с сотнями клеток Пуркинье.
  2. Лазающие волокна производятся исключительно в нижней оливе и передают импульсы мозжечковым ядрам и ячейкам Пуркинье мозжечковой коры. Их называют лазающими, потому что их подъем аксонов и оборачивание вокруг дендритов ячейки Пуркинье - как поднимающаяся виноградная лоза. Каждая клетка Пуркинье получает единственный, чрезвычайно сильный импульс от единственного лазающего волокна. В отличие от мшистых волокон и параллельных волокон каждое лазающее волокно связывается с 10 ячейками Пуркинье в среднем, делая ~300 синапсов с каждой ячейкой.

Клетка Пуркинье является единственным источником передачи информации из коры мозжечка (обратите внимание на различие между клетками Пуркинье, которые передают сигналы из коры мозжечка, и мозжечковыми ядрами, которые отдают информацию из всего мозжечка).

Теперь вы имеете представление о том, что такое мозжечок головного мозга. Его функции в организме действительно очень важны. Наверное, каждый на себе испытывал состояние опьянения? Так вот, алкоголь достаточно сильно влияет на клетки Пуркинье, из-за чего, собственно, человек теряет равновесие и не способен нормально двигаться во время опьянения алкоголем.

Даже из этого можно сделать выводы, что большой мозжечок (занимающий около 10% всей массы мозга) выполняет большую роль в организме человека.

Роль мозжечка в двигательной адаптации продемонстрирована экспериментально. Если нарушить зрение (например, поместив перед глазами призмы), вестибуло-окулярный компенсаторного движения глаз при поворотах головы уже не будет соответствовать получаемой мозгом зрительной информации. Испытуемому в очках-призмах сначала очень трудно правильно перемещаться в окружающей среде, однако через несколько дней он приспосабливается к аномальной зрительной информации. При этом отмечены чёткие количественные изменения вестибуло-окулярного , его долговременная адаптация. Опыты с разрушением нервных структур показали, что такая двигательная адаптация невозможна без участия мозжечка. Пластичность функций мозжечка и двигательное , определение их нейрональных механизмов было описано Девидом Марром и Джеймсом Альбусом.

Пластичность функции мозжечка ответственна также за двигательное научение и стереотипных движений, таких как письмо, печатание на клавиатуре и др.

Хотя мозжечок и связан с корой головного мозга, его деятельность не контролируется сознанием.

Функции

Функции мозжечка сходны у различных биологических видов, включая человека. Это подтверждается их нарушением при повреждении мозжечка в эксперименте у животных и результатами клинических наблюдений при заболеваниях, поражающих мозжечок у человека. Мозжечок представляет собой мозговой центр, который имеет в высшей степени важное значение для координации и регуляции двигательной активности и поддержания позы. Мозжечок работает главным образом рефлекторно, поддерживая равновесие тела и его ориентацию в пространстве. Также он играет важную роль (особенно у млекопитающих) в локомоции (перемещении в пространстве).

Соответственно главными функциями мозжечка являются:

  1. координация движений
  2. регуляция равновесия
  3. регуляция мышечного тонуса

Проводящие пути

Мозжечок связан с другими отделами нервной системы многочисленными проводящими путями, которые проходят в ножках мозжечка . Различают афферентные (идущие к мозжечку) иэфферентные (идущие от мозжечка) пути. Эфферентные пути представлены только в верхних ножках.

Пути мозжечка не перекрещиваются вообще либо перекрещиваются дважды. Поэтому при половинном поражении самого мозжечка либо одностороннем поражении ножек мозжечка симптоматика поражения развивается на стороны поражения (гомолатерально ).

Верхние ножки

Через верхние ножки мозжечка проходят эфферентные пути, за исключением афферентного пути Говерса.

  1. Передний спинально-мозжечковый путь (лат. tractus spino-cerebellaris anterior ) (путь Говерса) - первый этого пути начинается от проприорецепторов мышц, суставов, сухожилий инадкостницы и находится в спинномозговом ганглие. Второй нейрон - клетки заднего рога спинного мозга, аксоны которого переходят на противоположную сторону и поднимаются вверх в передней части бокового столба, проходят , варолиев мост, затем вновь перекрещиваются и через верхние ножки поступают в кору полушарий мозжечка, а затем в зубчатое ядро.
  2. Зубчато-красный путь (лат. tractus dento-rubralis ) - начинается от зубчатого ядра и проходят через верхние мозжечковые ножки. Эти пути осуществляют двойной перекрёст (перекрёст Вернекинга) и заканчиваются на красных ядрах (лат. nucleus rubrae ). Аксоны нейронов красных ядер формируют руброспинальный путь (путь Монакова). После выхода из красного ядра этот путь вновь перекрещивается (перекрёст Фореля), спускается в , в составе бокового столба спинного мозга и достигает α- и γ-мотонейронов спинного мозга.
  3. Мозжечково-таламический путь (лат. tractus cerebello-thalamicus ) - идёт к ядрам таламуса. Через них связывает мозжечок с и корой головного мозга.
  4. Мозжечково-ретикулярный путь (лат. tractus cerebello-reticularis ) - связывает мозжечок с ретикулярной формацией, от которой в свою очередь начинается ретикулярно-спинальный путь.
  5. Мозжечково-вестибулярный путь (лат. tractus cerebello-vestibularis ) - особый путь, так как в отличие от других проводящих путей, начинающихся в ядрах мозжечка, представляет собой аксоны клеток Пуркинье, направляющиеся к латеральному вестибулярному ядру Дейтерса (ядру преддверно-улиткового нерва).

Средние ножки

Через средние ножки мозжечка проходят афферентные пути, которые соединяют мозжечок с корой головного мозга.

  1. Лобно-мосто-мозжечковый путь (лат. tractus fronto-ponto-cerebellaris ) - начинается от передних и средних лобных извилин, проходит через переднее бедро внутренней капсулы на противоположную сторону и переключается на клетках варолиевого моста, которые представляют собой второй нейрон данного пути. От них он поступает в контрлатеральную среднюю ножку мозжечка и заканчивается на клетках Пуркинье его полушарий.
  2. Височно-мосто-мозжечковый путь (лат. tractus temporo-ponto-cerebellaris ) - начинается от клеток коры височных долей головного мозга. В остальном его ход схож с таковым лобно-мосто-мозжечкового пути.
  3. Затылочно-мосто-мозжечковый путь (лат. tractus occipito-ponto-cerebellaris ) - начинается от клеток коры затылочной доли головного мозга. Передаёт в мозжечок зрительную информацию.

Нижние ножки

В нижних ножках мозжечка проходят афферентные проводящие пути идущий от спинного мозга и ствола головного мозга к коре мозжечка.

  1. Задний спинально-мозжечковый путь (лат. tractus spino-cerebellaris posterior ) (путь Флексига) связывает мозжечок со спинным мозгом. Проводит импульсы от проприорецепторов мышц, суставов,сухожилий и надкостницы, которые достигают задних рогов спинного мозга в составе чувствительных волокон и задних корешков спинномозговых нервов. В задних рогах спинного мозга они переключаются на т. н. клетки Кларка, представляющие собой второй нейрон глубокой чувствительности. Аксоны клеток Кларка формируют путь Флексига. Они проходят в задней части бокового столба со своей стороны и в составе нижних ножек мозжечка достигают его коры.
  2. Оливо-мозжечковый путь (лат. tractus olivo-cerebellaris ) - начинается в ядре нижней оливе с противоположной стороны и заканчивается на клетках Пуркинье коры мозжечка. Оливо-мозжечковый путь представлен лазящими волокнами. Ядро нижней оливы получают информацию непосредственно от коры головного мозга и таким образом проводит информацию от её премоторных зон, то есть областей ответственных за планирование движений.
  3. Вестибуло-мозжечковый путь (лат. tractus vestibulo-cerebellaris ) - начинается от верхнего вестибулярного ядра Бехтерева (ядра преддверно-улиткового нерва) и через нижние ножки достигает коры мозжечка флоккуло-нодулярной области (архицеребеллума). Информация вестибуло-мозжечкового пути переключившись на клетках Пуркинье достигает ядра шатра(лат. nucleus fastigii ).
  4. Ретикуло-мозжечковый путь (лат. tractus reticulo-cerebellaris ) - начинается от ствола головного мозга, доходит до коры червя мозжечка. Соединяет мозжечок и базальные ганглии экстрапирамидной системы.


Copyright © 2024 Медицинский портал - Здравник.