Типы электронной эмиссии. Эмиссия электронов из проводников Способы и методы увеличения эмиссии электронов

Лекция 2

Образование отрицательных ионов

Установлено, что галогены при ионизации способны присоединять электроны с образованием отрицательных ионов (галогены: F, Cl, Br, J). Наибольшее сродство к электрону имеет F, который часто вводится в дугу в виде солей (CaF2) с целью подавления пористости в металле шва. Присоединение атомами F отрицательных ионов приводит к тому, что в дуговой плазме уменьшается концентрация свободных электронов, хотя общее количество заряженных частиц остаётся постоянным. Электроны переносят основную часть тока. Отрицательные ионы F – тяжёлые малоподвижные частицы, которые осуществляют перенос тока значительно хуже. Поэтому при введении в зону сварки веществ, содержащих F, стабильность горения дуги резко ухудшается, особенно при сварке на переменном токе. Поэтому электроды типа УОНИ 13/45, содержащие в своём составе значительное количество CaF2, применяются на постоянном токе. Если сварку необходимо производить на переменном токе, тогда в состав подобных покрытий вводятся ионизирующие вещества, или применяется стабилизация дуги с помощью осцилляторов или генераторов импульсов.

Эмиссия электронов из поверхности катода

Для вырывания электрона из катода необходимо преодолеть силы притяжения электрона положительными зарядами катода. Для этого необходимо затратить определённое количество работы, которое называется работой выхода. Величина работы выхода зависит от материала катода и состояния его поверхности (наличие окисных и других плёнок). Для процесса в сварочной дуге основное значение имеют два вида эмиссии электронов: термоэлектронная и автоэлектронная.

Термоэлектронная эмиссия возникает при нагреве поверхности катода. При этом отдельные электроны могут получить энергию достаточную для выполнения работы выхода и покинуть поверхность катода. При отсутствии электрического поля над поверхностью катода образуется электронное облако, и дальнейший процесс эмиссии электронов прекращается.

С течением времени отдельные электроны из пространственного заряда возвращаются к телу заряда и втягиваются в металл. Происходит одновременно эмиссия электронов и втягивание их обратно в металл. При длительном нагреве металла с постоянной температурой устанавливается равновесная плотность эмиссии (количество эмитированных электронов равно количеству втянутых).

Плотность электронного тока может быть подсчитана по формуле:

j = AT 2 exp(-j/kt)

где j - работа выхода.

С увеличением температуры плотность тока термоэлектронной эмиссии возрастает. При температуре сварочной дуги устанавливается такая плотность термоэлектронной эмиссии, которая достаточна для поддержания устойчивого дугового разряда.



Автоэлектронная эмиссия . С целью облегчения эмиссии электронов из металла, разогретый металл – катод помещают в электрическое переменное поле. Полюса поля располагают следующим образом: ²-² на металле, ²+² на противоположном электроде – аноде.

Электрическое поле полностью или частично разрушает пространственный электрический заряд. Это облегчает эмиссию электронов из катода и увеличивает равновесную плотность эмиссии, которая рассчитывается по такой же зависимости.

Уравнение для тока термо- и автоэлектронной эмиссии приобретает вид:

В электрическом поле уменьшается работа выхода электрона на величину

Δj= 0 3/2 Е 1/2,

где Е – напряжённость поля.

Эмиссия под воздействием электрического поля называется автоэлектронной. Для сварки свойственны оба вида эмиссии.

Уменьшение работы выхода с поверхности электрода может служить одним из способов стабилизации дугового разряда.

Таблица - Работа выхода с поверхности катода для различных материалов

При наличии на поверхности электрода окисных плёнок работа выхода значительно уменьшается, особенно сильно снижают j плёнки окислов щелочных и щелочноземельных металлов. С целью улучшения стабильности горения дуги при сварке W электродами в состав электродов вводятся окислы La , такие электроды называются лантанированными. Ранее применяемые электроды содержали 1,5-2,5% двуокиси тория. ВТ-15 и ВТ-25 (1,5-2,5% двуокиси тория). Дуга при этом не блуждает по поверхности металла.



За рубежом и в нашей стране предпринимались попытки повышения стабильности путём снижения j электрона с поверхности плавящегося электрода. Для этого применяли активированную проволоку, т.е. покрытую тонким слоем солей. Наилучший эффект дают соли цезия (обеспечивает низкий потенциал ионизации). При этом измельчаются капли расплавленного металла.

Электронная эмиссия

испускание электронов поверхностью твёрдого тела или жидкости. Э. э. возникает в случаях, когда под влиянием внешних воздействий часть электронов тела приобретает энергию, достаточную для преодоления потенциального барьера (См. Потенциальный барьер) на границе тела, или если под действием электрического поля поверхностный потенциальный барьер становится прозрачным для части электронов, обладающих внутри тела наибольшими энергиями. Э. э. может возникать при нагревании тел (Термоэлектронная эмиссия), при бомбардировке электронами (Вторичная электронная эмиссия), ионами (Ионно-электронная эмиссия) или фотонами (Фотоэлектронная эмиссия). В определённых условиях (например, при пропускании тока через полупроводник с высокой подвижностью электронов или при приложении к нему сильного импульса электрического поля) электроны проводимости могут «нагреваться» значительно сильнее, чем кристаллическая решётка, и часть из них может покинуть тело (эмиссия горячих электронов).

Для наблюдения Э. э. необходимо создать у поверхности тела (эмиттера) внешне ускоряющее электроны электрическое поле, которое «отсасывает» электроны от поверхности эмиттера. Если это поле достаточно велико (≥ 10 2 в/см ), то оно уменьшает высоту потенциального барьера на границе тела и соответственно работу выхода (Шотки эффект), в результате чего Э. э. возрастает. В сильных электрических полях (Электронная эмиссия10 7 в/см ) поверхностный потенциальный барьер становится очень тонким и возникает туннельное «просачивание» электронов сквозь него (Туннельная эмиссия), иногда называемое также автоэлектронной эмиссией. В результате одновременного воздействия 2 или более факторов может возникать термоавто- или фотоавтоэлектронная эмиссия. В очень сильных импульсных электрических полях (Электронная эмиссия 5․10 7 в/см ) туннельная эмиссия приводит к быстрому разрушению (взрыву) микроострий на поверхности эмиттера и к образованию вблизи поверхности плотной плазмы (См. Плазма). Взаимодействие этой плазмы с поверхностью эмиттера вызывает резкое увеличение тока Э. э. до 10 6 а при длительности импульсов тока в несколько десятков нсек (взрывная эмиссия). При каждом импульсе тока происходит перенос микроколичеств (Электронная эмиссия 10 -11 г ) вещества эмиттера на анод.

Лит.: Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966; Бугаев С. П., Воронцов-Вельяминов П. Н., Искольдский А. М., Месяц С, А., Проскуровский Д. И., Фурсей Г. Н., Явление взрывной электронной эмиссии, в сборнике: Открытия в СССР 1976 года, М., 1977.

Т. М. Лифшиц.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Электронная эмиссия" в других словарях:

    Электронная эмиссия явление испускания электронов поверхностью твёрдого тела или жидкости. Типы эмиссии Термоэлектронная эмиссия Электронную эмиссию, возникающую в результате нагрева, называют термоэлектронной эмиссией (ТЭ). Явление ТЭ… … Википедия

    Испускание электронов поверхностью конденсированной среды. Э. э. возникает в случаях, когда часть электронов тела приобретает в результате внеш. воздействия энергию, достаточную для преодоления потенц. барьера на его границе, или если внеш.… … Физическая энциклопедия

    Испускание эл нов поверхностью конденсированной среды. Э. э. возникает в случаях, когда часть эл нов тела приобретает в результате внеш. воздействий энергию, достаточную для преодоления потенциального барьера на его границе, или если внеш.… … Физическая энциклопедия

    ЭЛЕКТРОННАЯ эмиссия, испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов… … Современная энциклопедия

    Большой Энциклопедический словарь

    Электронная эмиссия - ЭЛЕКТРОННАЯ ЭМИССИЯ, испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов… … Иллюстрированный энциклопедический словарь

    электронная эмиссия - Испускание электронов с поверхности материала в окружающее пространство. [ГОСТ 13820 77] Тематики электровакуумные приборы … Справочник технического переводчика

    электронная эмиссия - испускание электронов поверхностью твердого тела или жидкости. Электронная эмиссия возникает в случаях, когда под влиянием внешних воздействий часть электронов тела приобретает энергию, достаточную для преодоления… … Энциклопедический словарь по металлургии

    Испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов (вторичная электронная… … Энциклопедический словарь

    Испускание электронов в вом. В зависимости от способа возбуждения различают след. осн. типы Э. э.: термоэлектронная эмиссия, фотоэлектронная эмиссия (см. Фотоэффект внешний), вторичная электронная эмиссия, автоэлектронная эмиссия … Большой энциклопедический политехнический словарь

Книги

  • Взрывная электронная эмиссия , Г. А. Месяц , … Категория: Электричество и магнетизм
  • Вторичная электронная эмиссия , И. М. Бронштейн , Б. С. Фрайман , Книга посвящена одному из вопросов современной физической электроники - вторичной электронной эмиссии. Рассмотрены методы измерений: коэффициента вторичной эмиссии (ВЭ), неупругого и упругого… Категория: Физика твердого тела. Кристаллография Серия: Физико-математическая библиотека инженера Издатель:

выделением избытка энергии, равного разности уровней энергии электрона в теле и в ионе ε 1 – ε i 1 . Эта энергия может быть либо передана другому электрону тела с начальной энергией ε 2 (оже-процесс), либо выделена в виде кванта света. Второй процесс обладает меньшей вероятностью. В случае, если энергия возбужденного электрона ε = ε 2 + (ε 1 – ε i 1 ) окажется большей нуля, он сможет выйти из эмиттера. Таким образом, в акте эмиссии участвуют два электрона тела: один освобождает энергию путем туннельного перехода из тела к иону с нейтрализацией последнего, другой получает эту энергию возбуждения и выходит из тела, т.е. имеем и процесс туннельного перехода, и процесс возбуждения.

10.7 Эмиссия горячих электронов

Эмиссией горячих электронов называется испускание электронов полупроводником при наличии в нем электрического поля. Горячие электроны эмитируются из зоны проводимости. Поэтому необходимым условием возможности появления эмиссии этих электронов является предварительное тепловое возбуждение их из основной зоны или с донорных уровней в зону проводимости. Таким образом, при эмиссии горячих электронов фактически реализуются два различных механизма возбуждения электронов: 1) возбуждение их в зону проводимости за счет тепловой энергии решетки; 2) возбуждение электронов в зоне проводимости на уровни энергии, превышающие уровень вакуума. Этот тип возбуждения возникает за счет работы сил электрического поля в полупроводнике; в конечном счете эта энергия берется от внешнего источника напряжения, создающего поле. Наличие электрического поля в полупроводнике вызывает ускорение находящихся в зоне проводимости электронов. Эти электроны взаимодействуют с фононами тела. При таких столкновениях электронов может происходить резкое изменение направления их движения и имеет место лишь малая потеря их скорости. В результате средние энергии электронов оказываются выше таковых для ионов; можно сказать, что температура электронного газа оказывается выше температуры кристаллической решетки. Это приводит к появлению эмиссии электронов, которую условно можно было бы назвать «термоэмиссией», однако температура, которая ее определяет, будет выше температуры решетки.

10.8 Комбинированные виды эмиссии

Наиболее часто используется комбинированный тип эмиссии основанный на эффекте Шоттки. Как уже рассматривалось в параграфе 2, при наложении внешнего электрического поля высота барьера понижается и тем самым уменьшается эффективная работа выхода. Поэтому в этом случае требуется меньшее (по энергии) предварительное возбуждение электронов, что бы перевести их на уровни энергии большие высоты потенциального барьера. Таким образом наложение электрического поля стимулирует все виды эмиссии с предварительным возбуждением. Поэтому к комбинированному типу эмиссии прежде всего будем относить следующие: авто-

Большую роль в обеспечении проводимости дугового промежутка играют электроны, поставляемые катодом под действием различных причин. Этот процесс выхода электронов с поверхности электрода катода или процесс освобождения электронов от связи с поверхностью называется эмиссией электронов. Для процесса эмиссии необходимо затратить энергию.

Энергия, которая достаточна для выхода электронов с поверхности катода, называется работой выхода (U вых )

Она измеряется в электрон-вольтах и обычно в 2-3 раза меньше работы ионизации.

Различают 4 вида эмиссии электронов:

1. Термоэлектронная эмиссия

2. Автоэлектронная эмиссия

3. Фотоэлектронная эмиссия

4. Эмиссия под действием удара тяжелых частиц.

Термоэлектронная эмиссия протекает под действием сильного нагрева поверхности электрода – катода. Под действием нагрева электроны, находящиеся на поверхности катода приобретают такое состояние, когда их кинетическая энергия становится равной или больше сил их притяжения к атомам поверхности электрода, они теряют связь с поверхностью и вылетают в дуговой промежуток. Сильный разогрев торца электрода (катода) протекает потому, что в момент его соприкосновения с деталью это соприкосновение происходит лишь в отдельных точках поверхности вследствие наличия неровностей. Такое положение при наличии тока приводит к сильному разогреву места контакта, в результате чего возбуждается дуга. Температура поверхности сильно влияет на имитирование электронов. Обычно эмиссия оценивается плотностью тока. Связь между термоэлектронной эмиссией и температурой катода установили Ричардсон и Дешман.

где j 0 – плотность тока, А/cм 2 ;

φ – работа выхода электрона, э-В;

А – константа, теоретическое значение которой А = 120 а/см 2 град 2 (опытное значение для металлов А » 62,2).

При автоэлектронной эмиссии энергия, необходимая для выхода электронов, сообщается внешним электрическим полем, которое как бы “отсасывает” электроны за пределы воздействия электростатического поля металла. В этом случае плотность тока может быть рассчитана по формуле

, (1.9)

где Е – напряженность электрического поля, В/см;

С повышением температуры значение автоэлектронной эмиссии снижается, но при невысоких температурах ее влияние может быть определяющим, особенно при высокой напряженности электрического поля (10 6 – 10 7 В/см), что по данным Броуна М.Я. и Г.И. Погодина-Алексеева может быть получено в приэлектродных областях.

При поглощении энергии излучения могут появиться электроны настолько большой энергии, что некоторые из них выходят с поверхности. Плотность тока фотоэмиссии определяется по формуле

где α – коэффициент отражения, значение которого для сварочных дуг неизвестно.

Длины волн, которые вызывают фотоэмиссию также как и для ионизации определяются по формуле

В отличие от ионизации, эмиссия электронов с поверхности щелочных и щелочноземельных металлов вызывается видимым светом.

Поверхность катода может быть подвергнута ударам тяжелых частиц (положительных ионов). Положительные ионы в случае удара о поверхность катода могут:

Во-первых , отдать кинетическую энергию, которой они обладают.

Во-вторых , могут нейтрализоваться на поверхности катода; при этом они отдают электроду энергию ионизации.

Таким образом, катод приобретает дополнительную энергию, которая идет на нагрев, плавление и испарение, а некоторая часть затрачивается вновь на выход электронов с поверхности. В результате достаточно интенсивной эмиссии электронов с катода и соответствующей ионизации дугового промежутка устанавливается устойчивый разряд – электрическая дуга с протеканием в цепи определенной величины тока при определенном напряжении.

В зависимости от степени развития того или иного вида эмиссии различают три типа сварочных дуг:

Дуги с горячим катодом;

Дуги с холодным катодом;

  • Анемия, ее виды. Гемолитическая болезнь как причина нарушений психики, речи и двигательных расстройств.
  • Безусловное торможение. Сущность внешнего и запредельного торможения. Условное торможение, его виды.
  • Билет № 11. Ценовая эластичность спроса: определение, факторы, виды.
  • В33. Международно-противоправное деяние государства: понятие и виды.
  • Электронная эмиссия - явление испускания электронов поверхностью твёрдого тела или жидкости.

    · Термоэлектронная эмиссия

    Электронную эмиссию, возникающую в результате нагрева, называют термоэлектронной эмиссией (ТЭ). Явление ТЭ широко используют в вакуумных и газонаполняемых приборах.

    · Электростатическая или Автоэлектронная эмиссия

    Электростатической (автоэлектронной эмиссией) называют эмиссию электронов, обусловленную наличием у поверхности тела сильного электрического поля. Дополнительная энергия электронам твёрдого тела при этом не сообщается, но за счёт изменения формы потенциального барьера они приобретают способность выходить в вакуум.

    · Фотоэлектронная эмиссия

    Фотоэлектронная эмиссия (ФЭ) или внешний фотоэффект - эмиссия электронов из вещества под действием падающего на его поверхность излучения. ФЭ объясняется на основе квантовой теории твёрдого тела и зонной теории твёрдого тела.

    · Вторичная электронная эмиссия

    Испускание электронов поверхностью твёрдого тела при её бомбардировке электронами.

    · Ионно-электронная эмиссия

    Испускание электронов металлом при его бомбардировке ионами.

    · Взрывная электронная эмиссия

    Испускание электронов в результате локальных взрывов микроскопических областей эмиттера.

    · Криогенная электронная эмиссия

    Испускания электронов ультрахолодными, охлаждёнными до криогенных температур поверхностями. Мало изученное явление.

    39. Блокинг-генератор: схема, принцип работы, временные диаграммы, область применения.

    Бло́кинг-генера́тор - генератор сигналов с глубокой трансформаторной обратной связью, формирующий кратковременные (обычно около 1 мкс) электрические импульсы, повторяющиеся через сравнительно большие интервалы. Применяются врадиотехнике и в устройствах импульсной техники. Выполняются с использованием одного транзистора или одной лампы.

    Теоретически блокинг-генератор работает и при согласном и при встречном включении обмоток трансформатора, но это два разных генератора с разными режимами работы и с разными характеристиками.

    Блокинг-генератор представляет собой релаксационную схему, содержащую усилительный элемент (например, транзистор), работающий в ключевом режиме, и трансформатор, осуществляющий положительную обратную связь. Достоинствами блокинг-генераторов являются сравнительная простота, возможность подключения нагрузки через трансформатор (гальваническая развязка), способность формировать мощные импульсы, близкие по форме к прямоугольным.

    

    Copyright © 2024 Медицинский портал - Здравник.