Измерения постоянной неизменной физической величины. Измерения физических величин и их классификация

Физическая величина – свойство физических объектов, общее в качественном отношении многим объектам, но в количественном отношении индивидуальное для каждого из нас. Качественная сторона понятия «физическая величина» определяет ее род (например, электрическое сопротивление как общее свойство проводников электричества), а количественная – ее «размер» (значение электрического сопротивления конкретного проводника, например R=100 Ом).

Размер физической величины – количественная определенность величины, присущая конкретному предмету, системе, явлению или процессу.

Значение физической величины – оценка размера физической величины в виде некоторого числа принятых для нее единиц измерения. Числовое значение физической величины – отвлеченное число, выражающее отношение значения физической величины к соответствующей единице данной физической величины (например, 10В – значение амплитуды напряжения, причем само число 10 и есть числовое значение).

Истинным значением физической величины называют значение физической величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта. Определить экспериментально его невозможно вследствие неизбежных погрешностей измерения.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой физической величины. В метрологии существуют два основных постулата: 1) истинное значение определяемой величины существует и оно постоянно ; 2) истинное значение измеряемой величины отыскать невозможно .

Действительным значением физической величины называют ее значение, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для определенной цели может быть использовано вместо него. Действительное значение физической величины определяют по образцовым мерам и приборам, погрешностями которых можно пренебречь по сравнению с погрешностями применяемых рабочих средств измерения.

Международная система единиц физических величин. Единицы физических величин делят на основные и производные и объединяют в системы единиц физических величин .

В основу системы СИ положены семь основных и две дополнительные физические величины. Основные единицы: метр, килограмм, секунда, ампер, кельвин, моль и кандела.

Единица длины – метр – длина пути, которую проходит свет в вакууме за 1/299792458 долю секунды;

единица массы – килограмм – масса, равная массе международного прототипа килограмма, представляющего цилиндр из сплава платины и иридия;

единица времени секунда – продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя уровнями сверхтонкой структуры основного состояния атома цезия -133 при отсутствии возмущения со стороны внешних полей;



единица силы электрического тока ампер – сила неменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого, создал бы между этими проводниками силу, равную на каждый метр длины;

единица термодинамической температуры кельвин -1/273,16 часть термодинамической температуры тройной точки воды, т.е. температуры, при которой три фазы воды – парообразная, жидкая и твердая – находятся в динамическом равновесии;

единица количества вещества моль – количество вещества, содержащего столько структурных элементов, сколько содержится в углероде -12 массой 0,012 кг;

единица силы света кандела – сила света в заданном направлении источника, испускающего монохроматическое излучение частотой (длина волны около 0,555 мкм), чья энергетическая сила излучения в этом направлении составляет 1/683 Вт/ср (ср – стерадиан).

Дополнительные единицы системы СИ предназначены только для образования единиц угловой скорости и углового ускорения. К дополнительным физическим величинам системы СИ относят плоский и телесный углы.

Радиан (рад) – угол между двумя радиусами окружности, длина дуги которой равна этому радиусу.

Стерадиан (ср) – телесный угол с вершиной в центре сферы, вырезающий на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы.

Производные единицы системы СИ образуются из основных и дополнительных.

Единицы физических величин делят на системные и внесистемные.



Системная единица – единица физической величины, входящая в одну из принятых систем. Все основные и производные, а также кратные и дольные единицы являются системными.

Внесистемная единица – единица физической величины, не входящая в принятые системы единиц. Внесистемные единицы делят на: допускаемые наравне с единицами СИ; допускаемые к применению в специальных областях; временно допускаемые и устаревшие. Например, плоские углы чаще всего измеряют в угловых градусах, минутах и секундах. Эти внесистемные единицы допущены к применению наравне с единицами СИ. Среди получивших широкое распространение внесистемных единиц следует отметить киловатт-час, градус Цельсия и пр.

На практике применение целых единиц не всегда удобно, так как в результате измерений получают очень большие или очень малые их значения. Поэтому в системе СИ установлены ее десятичные кратные и дольные единицы, которые образуются с помощью множителей. Кратная единица физической величины – единица, большая в целое число раз системной, например килогерц (10 3 Гц). Дольная единица физической величины – единица, меньшая в целое число раз системной, например микрогенри (10 -6 Гн). Наименования кратных и дольных единиц системы СИ содержат ряд приставок, соответствующих множителям.

Основные характеристики измерений. Основными характеристиками измерений являются: результат и погрешность.

Результат измерений физической величины – значение физической величины, полученное путем ее измерения. Часто в полученный результат вносят поправки.

– разность между показаниями средства измерения и истинным значением измеряемой физической величины.

Качество измерений характеризуется точностью, правильностью, сходимостью и воспроизводимостью, достоверностью, а также размером допускаемых погрешностей.

Достоверность – характеристика качества измерений, отражающая доверие к их результатам, которая определяется доверительной вероятностью того, что истинное значение измеряемой величины находится в некотором заданном интервале. Подобный интервал называют доверительным и между его границами с заданной доверительной вероятностью

находится истинное значение оцениваемого параметра. В (1.1) параметр q – уровень значимости ошибки, – нижняя и верхняя границы доверительного интервала.

Шкала физической величины – упорядоченная последовательность значений физической величины, принятая по результатам точных измерений. Среди шкал следует выделить три основных типа: шкалы наименований, интервалов и абсолютные шкалы.

Шкала наименований (шкала классификации) основана на приписывании объекту цифр, играющих роль простых имен.

Шкала интервалов (шкала разностей) отражает разность значений физической величины. К таким шкалам относятся температурные шкалы Цельсия, Фаренгейта и Реомюра. В температурной шкале Цельсия за начало отсчета разности температур принята температура таяния льда.

Абсолютные шкалы имеют естественное однозначное определение единицы измерения. Данные шкалы соответствуют относительным величинам: коэффициенту усиления, коэффициенту ослабления и т.д.

Виды измерений. Виды измерений определяются физическим характером измеряемой величины, требуемой точностью и необходимой скоростью измерений, условиями и режимом измерений и пр. Наиболее широко применяется классификация по общим приемам получения результатов измерений, согласно которым измерения делятся на прямые, косвенные, совместные и совокупные.

Прямыми называются измерения, при которых искомое значение величины находят непосредственно по показаниям средства измерения. Аналитически прямые измерения записывают в виде

где Х – значение величины, найденное путем ее измерения и называемое результатом измерения.

Косвенные измерения – это измерения, при которых значение измеряемой величины находят на основании известной зависимости между ней и величинами, определяемыми прямыми измерениями, которые проводились в одинаковых условиях. Косвенные измерения можно охарактеризовать следующей формулой:

где - результаты прямых измерений величин, связанных функциональной зависимостью с искомым значением измеряемой величины А.

Совокупными называют проводимые одновременно измерения нескольких одноименных величин, при которых их значения находят решением системы уравнений, получаемых при прямых или косвенных измерениях различных сочетаний этих величин.

Совместными называются проводимые одновременно измерения двух или нескольких неодноименных величин для установления зависимости между ними.

Следовательно, совместные измерения можно интерпретировать как обобщение косвенных измерений, а совокупные – как обобщение прямых измерений.

Эталоны, их классификация. Эталон – средство измерения (или комплекс средств измерений), обеспечивающее воспроизведение и (или) хранение единицы физической величины с наивысшей точностью для данного уровня развития измерительной техники с целью передачи ее размера нижестоящим по поверочной схеме средствам измерений.

Каждый эталон должен обладать тремя взаимосвязанными свойствами: неизменностью, воспроизводимостью и сличаемостью.

Неизменность - свойство эталона удерживать неизменным размер воспроизводимой им единицы физической величины в течение длительного интервала времени.

Воспроизводимость – возможность воспроизведения единицы физической величины с наименьшей погрешностью для существующего уровня развития измерительной техники.

Сличаемость – возможность сличения с эталоном других средств измерений, нижестоящих по поверочной схеме, в первую очередь, вторичных эталонов, с наивысшей точностью для соответствующего уровня развития техники измерений.

Эталоны принято классифицировать в зависимости от назначения, в соответствии с которым предполагается оснащение соответствующих метрологических служб первичными, специальными, национальными, международными и вторичными эталонами.

Первичный эталон обеспечивает воспроизведение единицы физической величины с наивысшей в стране точностью. Первичные эталоны – уникальные средства измерений, часто представляющие собой сложнейшие измерительные комплексы. Данные эталоны составляют основу государственной системы обеспечения единства измерений и подразделяются на специальные, национальные, государственные и международные.

Специальный эталон воспроизводит физическую величину в особых условиях и заменяет для них первичный эталон. Первичные и специальные эталоны являются исходными для страны, их утверждают в качестве национальных.

Национальный – первичный (или специальный) эталон, признанный в качестве исходного на территории государства. Национальные эталоны создают, хранят и применяют центральные метрологические научные институты страны.

Международный – эталон, принятый по международному соглашению в качестве международной основы для согласования с ним размеров единиц, воспроизводимых и хранимых национальными эталонами.

Вторичный эталон – эталон, значение которого устанавливают по первичному эталону. Вторичные эталоны являются частью подчиненных средств хранения единиц и передачи их размеров, создаются в тех случаях, когда это необходимо для организации поверочных работ, а также для обеспечения сохранности и наименьшего износа государственного эталона. По назначению вторичные эталоны делят на эталоны-свидетели, эталоны-копии, эталоны сравнения и рабочие эталоны.

Эталон-свидетель служит для проверки сохранности и неизменности государственного эталона и замены его в случае порчи или утраты. В настоящее время международный эталон килограмма имеет эталон-свидетель.

Эталон-копия предназначен для передачи размера единицы рабочим эталонам. Его создают в случае необходимости проведения большого числа поверочных работ с целью предохранения первичного или специального эталона от преждевременного износа. Эталон-копия представляет собой копию государственного эталона по метрологическому назначению.

Эталон сравнения применяют для взаимного сличения эталонов, которые по тем или иным причинам нельзя непосредственно сравнивать друг с другом.

Рабочий эталон – мера, измерительный прибор или преобразователь, утвержденные в качестве образцовых и служащие для поверки по ним других средств измерения. Рабочие эталоны предназначены для поверки наиболее точных средств измерений. Рабочие эталоны при необходимости подразделяют на 1-й, 2-й и последующие разряды, определяющие порядок их соподчинения в соответствии с поверочной схемой.

Основная литература:

Дополнительная литература:

Контрольные вопросы:

1. Что такое физическая величина и размерность физической величины?

2. Приведите основные, дополнительные и производные физические величины?

3. Что такое шкала физической величины?

4. Что такое эталон физической величины?

Тема лекции 2. Измерения. Погрешности измерений. Цель измерений.Качество,точность и погрешности измерений.Систематические погрешности.Методы исключениясистематических погрешностей.

Цель измерений - получение результата, т. е. оценки истинного значения физической величины. Для этого измерения необходимо проводить с возможно большей достоверностью и точностью. Но ка­кими бы точными и совершенными ни были средства и методы изме­рений и как бы тщательно измерения ни выполнялись, их результат всегда отличается от истинного значения измеряемой величины, т.е. определяется с некоторой погрешностью.

Если прямое измерение физической величины проведено один раз (так называемое однократное прямое измерение), то результатом измерения является непосредственное показание средства измерения. При этом за погрешность результата измерения часто принимают погрешность средства измерения.

В случае многократных наблюдений результат измерения и его погрешность находят различными методами статистической обработ­ки всех выполненных наблюдений.

Качество, точность и погрешности измерений. Под качеством измерений понимают совокупность свойств, обу­словливающих получение результатов этих измерений с требуемыми точностными характеристиками в необходимом виде и установлен­ные сроки. Качество измерений характеризуется, прежде всего, такими показателями как точность (погрешность), правильность и достовер­ность. Точность результата измерений - основная характеристика качества измерений, отражающая близость к нулю погрешности этого результата.

Погрешностью результата измерения называется отклонение найденного значения от истинного значения измеряемой физиче­ской величины. Поскольку истинное значение измеряемой величины не известно, то при количественной оценке погрешности пользуются действительным значением физической величины.

Погрешность средства измерения представляет собой разность между показания ми средства измерения и истинным (действительным) значением измеряемой физической величины. Эта погрешность харак­теризует точность результатов измерений, проводимых используемым средством измерений.

Абсолютной погрешностью , выражаемой в единицах измеряемой величины, называют отклонение результата измерения xот истинного значения x и

Абсолютная погрешность характеризует значение и знак полу­ченной погрешности, но не определяет качество самого измерения. Характеристикой качества измерения является точность измерения, отражающая меру близости результата измерения к истинному значе­нию измеряемой величины. Высокой точности измерений со­ответствует малая погрешность.

Относительной погрешностью называют отношение аб­солютной погрешности измерения к истинному значению измеряемой величины:

Мерой точности измерений служит показатель точности, обрат­ный модулю относительной погрешности: . Часто относи­тельную погрешность выражают в процентах: . По­скольку обычно << то относительная погрешность может быть определена как или

Приведенной погрешностью выражающей потенциальную точность измерений, называют отношение абсолютной погрешности к некоторому нормирующему значению (например, к конечному значению шкалы):

Систематические погрешности - составляющие погрешности измерений, сохраняющиеся постоянными или закономерно изме­няющиеся при многократных измерениях величины в одних и тех же условиях. Их отличительным признаком является то, что они могут быть предсказаны и обнаружены. Систематические погрешности выявляют детальным анализом их возможных источников и уменьшают введением соответствующей поправки, применением более точных приборов, калибровкой прибо­ров с помощью рабочих мер и т. п.

Случайные погрешности составляющие погрешности изме­рений, изменяющиеся случайным образом по значению и знаку при повторных измерениях одной и той же физической величины в одних и тех же условиях. Случайные составляющие погрешности измерений приводят к неоднозначности показаний и проявляются при повтор­ных измерениях одной и той же физической величины в виде неко­торого разброса получаемых результатов. Они могут быть вызваны, например, неправильным функционированием электронных элемен­тов измерительного устройства.

Грубые погрешности (промахи) - погрешности, существенно превышающие ожидаемые при данных условиях измерения. Они воз­никают из-за неучтенных внешних воздействий. Так, грубые погреш­ности могут быть вызваны кратковременными скачками питающего напряжения при включении в сеть мощных потребителей энергии. Промахи могут быть обусловлены и неправильными действиями опе­ратора, в частности возникающими ошибками при списывании им показаний измерительного прибора.

Итак, если не учитывать грубые погрешности, абсолютную пог­решность измерения , определяемую выражением (2.1), можно представить суммой систематической и случайной составляющих:

Из соотношения (2.4) следует, что абсолютная погрешность, как и результат измерения является случайной величиной.

Методические погрешности возникают из-за несовершенства метода измерений, некорректности алгоритмов или формул, по кото­рым производят вычисления результатов измерений, из-за влияния выбранного средства измерения на измеряемые параметры сигналов и т.д. Если, например, вольтметр имеет недостаточно высокое входное сопротивление, то его подключение к схеме способно изменить в ней распределение токов и напряжений. При этом результат измерения будет отличаться от действительного.

Пример 2.1. Покажем, как появляется методическая погрешность при измерении сопротивления резистора R x с помощью метода амперметра­= вольтметра (рис. 2.1).

Решение. Для определения зна­чения сопротивления R x необходимо измерить ток I R ,проте­кающий через резистор, и падение напряжения на нем U R .

В приведенной на рис. 2.1 схеме, реализующей этот метод измерения, падение напряжения на резисторе R x измеряется вольтметром V непос­редственно, в то время как амперметр А измеряет суммарный ток, одна часть которого протекает через резистор, а другая часть - через вольтметр. В результате измеренное значение со­противления будет не R x =U R /I R , а R" =U R /(I R +I V), и появится методиче­ская погрешность .Методическая погрешность уменьшается и стремится к нулю при токе , т. е. при внутреннем сопротивлении вольтметра .

Инструментальные (аппаратурные) погрешности возникают из-­за несовершенства средств измерения, т. е. от их собственных по­грешностей. Уменьшить инструментальные погрешности можно применением более точного прибора.

Внешние погрешности связаны с отклонением одной или нескольких влияющих величин от нормальных значений или выходом их за пределы нормальной области.

Субъективные погрешности вызваны ошибками эксперимента­тора при отсчете показаний (погрешности от небрежности и невни­мания экспериментатора).

Статические погрешности возникают при измерении уста­новившегося во времени значения измеряемой величины.

Динамические погрешности имеют место при динамических из­мерениях, когда измеряемая физическая величина изменяется во вре­мени. Причина появления динамических погрешностей состоит в не­соответствии скоростных (временных) характеристик прибора и ско­рости изменения измеряемой величины.

Основная погрешность средств измерений имеет место при нор­мальных условиях эксплуатации, оговоренных в регламентирующих документах.

Дополнительная погрешность средств измерений возникает из-за выхода какой-либо из влияющих величин за пределы нормальной об­ласти значений.

Систематические погрешности . Источниками систематических составляющих погрешности из­мерения могут быть объект и метод измерения, средства измерения, условия измерения и экспериментатор. При этом оценивание систе­матических составляющих представляет достаточно трудную мет­рологическую задачу. Важность ее определяется тем, что знание систематической погрешности позволяет ввести соответствующую поправку в результат измерения и тем самым повысить его точ­ность. Трудность же состоит в сложности обнаружения системати­ческой погрешности, поскольку ее невозможно выявить путем по­вторных измерений (наблюдений).

Постоянными называют такие систематические погрешности измерения, которые остаются неизменными (сохраняют величину и знак) в течение всей серии измерений.

Переменными называют погрешности, изменяющиеся в процессе измерения. Наличие существенной переменной систематической пог­решности искажает оценки характеристик случайной погрешности. Поэтому она должна обязательно выявляться и исключаться из ре­зультатов измерений.

Методы исключения систематических погрешностей. В реальных условиях полностью исключить системати­ческую составляющую погрешности невозможно. Всегда остаются ка­кие-то неучтенные факторы, которые нужно учитывать и которые будут вызывать систематическую погрешность измерения. Это значит, что систематическая погрешность тоже случайна и ее определение обусловлено лишь установившимися традициями обработки и пред­ставления результатов измерения.

Постоянные систематические погрешности можно обнаружить только путем сравнения результатов измерений с другими, по­лученными с использованием более точных методов и средств изме­рения. В ряде случаев систематическую погрешность можно исклю­чить путем устранения источников погрешности до начала измерений (профилактика погрешности), а в процессе измерений – внесением известных поправок в результаты измерений.

Метод замещения обеспечивает наиболее полную компенсацию постоянной систематической погрешности. Суть данного метода со­стоит в такой замене измеряемой величины известной величиной A,получаемой с помощью регулируемой меры, чтобы показание изме­рительного прибора сохранилось неизменным. Значение измеряемой величины считывают в этом случае по указателю меры. При исполь­зовании данного метода погрешность неточного измерительного при­бора устраняют, а погрешность измерения определяют только по­грешностью самой меры и погрешностью отсчета измеряемой вели­чины по указателю меры.

Метод компенсации погрешности по знаку используют для уст­ранения постоянной систематической погрешности, у которой в зави­симости от условий измерения изменяется только знак. При этом ме­тоде выполняют два измерения, результаты которых соответственно есть , где x и - измеряемая величина. Среднее значение из полученных результатов (x 1 + x 2)/2 = x и представляет со­бой окончательный результат измерения, не содержащий погрешнос­ти .

Метод введения поправок позволяет достаточно просто вычис­лить и исключить из результата измерения систематические погреш­ности. Поправка C - величина, одноименная с изме­ряемой x и, вводимая в результат измерения с целью ис­ключения систематической погрешности. В случае, если принимают и систематическая погрешность полностью исключается из результата измерения.

Поправки определяют экспериментально или путем специальных теоретических исследований и задают в виде формул, графиков или таблиц.

Метод противопоставления применяется в радиоизмерениях для уменьшения постоянных систематических погрешностей при срав­нении измеряемой величины с известной величиной примерно равно­го значения, воспроизводимой соответствующей образцовой мерой.

Метод рандомизации основан на принципе формального перевода сис­тематических погрешностей в случайные. Этот метод позволяет эф­фективно уменьшать постоянную систематическую погрешность (ме­тодическую и инструментальную) путем измерения некоторой вели­чины рядом однотипных приборов с последующей оценкой резуль­тата измерений в виде математического ожидания (среднего арифме­тического значения) выполненного ряда наблюдений. В данном мето­де при обработке результатов измерений используются случайные из­менения погрешности от прибора к прибору.

Основная литература:

Дополнительная литература :

Метрология, стандартизация и сертификация: конспект лекций Демидова Н В

3. Классификация измерений

3. Классификация измерений

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

Однократное измерение – это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое.

Многократные измерения – это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Минимальное число измерений, при котором измерение может считаться многократным, – четыре. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины. Примером такой постоянной во времени физической величины может послужить длина земельного участка.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы.

Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей). Результат измерения будет зависеть от того, какая величина принимается за базу сравнения.

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений, и некоторой известной зависимости между данными значениями и измеряемой величиной.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений, которая составлена из уравнений, полученных вследствие измерения возможных сочетаний измеряемых величин.

Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

Из книги ОБЩИЕ ТРЕБОВАНИЯ К КОМПЕТЕНТНОСТИ ИСПЫТАТЕЛЬНЫХ И КАЛИБРОВОЧНЫХ ЛАБОРАТОРИЙ автора Автор неизвестен

5.4.6 Оценка неопределенности измерений 5.4.6.1 Калибровочная лаборатория или испытательная лаборатория, осуществляющая свои собственные калибровки, должна иметь и применять процедуру оценки неопределенности измерений при всех калибровках и типах калибровок.5.4.6.2

Из книги Метрология, стандартизация и сертификация: конспект лекций автора Демидова Н В

5.6 Прослеживаемость измерений 5.6.1 Общие положения Все оборудование, используемое для проведения испытаний и/или калибровок, включая оборудование для дополнительных измерений (например окружающих условий), имеющее существенное влияние на точность и достоверность

Из книги Метрология, стандартизация и сертификация автора Демидова Н В

5. Основные характеристики измерений Выделяют следующие основные характеристики измерений:1) метод, которым проводятся измерения;2) принцип измерений;3) погрешность измерений;4) точность измерений;5) правильность измерений;6) достоверность измерений.Метод измерений –

Из книги Очень общая метрология автора Ашкинази Леонид Александрович

9. Средства измерений и их характеристики В научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно-измерительные приборы (КИП), и

Из книги автора

Из книги автора

16. Погрешности средств измерений Погрешности средств измерений классифицируются по следующим критериям:1) по способу выражения;2) по характеру проявления;3) по отношению к условиям применения. По способу выражения выделяют абсолютную и относительную

Из книги автора

Из книги автора

2 Классификация измерений Классификация средств измерений может проводиться по следующим критериям.1. По характеристике точности измерения делятся на равноточные и неравноточные.Равноточными измерениями физической величины называется ряд измерений некоторой

Из книги автора

3. Основные характеристики измерений Выделяют следующие основные характеристики измерений:1) метод, которым проводятся измерения;2) принцип измерений;3) погрешность измерений;4) точность измерений;5) правильность измерений;6) достоверность измерений.Метод измерений – это

Из книги автора

8. Средства измерений и их характеристики В научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно-измерительные приборы (КИП), и

Из книги автора

13. Погрешность измерений В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения

Из книги автора

16. Погрешности средств измерений Погрешности средств измерений классифицируются по следующим критериям:1) по способу выражения;2) по характеру проявления;3) по отношению к условиям применения.По способу выражения выделяют абсолютную и относительную погрешности.

Из книги автора

18. Выбор средств измерений При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах.В случае, если допустимая погрешность не предусмотрена в

Из книги автора

21. Поверка и калибровка средств измерений Калибровка средств измерений – это комплекс действий и операций, определяющих и подтверждающих настоящие (действительные) значения метрологических характеристик и (или) пригодность средств измерений, не подвергающихся

Из книги автора

Общие вопросы измерений Когда измерение становится проблемой Во-первых, когда предполагается измерять какую-то новую величину. Тут есть тонкость - что значит «новая величина»? Физики и инженеры считают, что существует то, что можно измерить. В величину, которую мы

Из книги автора

Обработка результатов измерений Нет данных без обработки и нет обработки без предварительной информации. Когда мы измеряем тестером напряжение в сети, мы немедленно делаем свой вывод - «нормально» или «низковато для этого времени суток» или «почему так много, тестер

1. Предмет и задачи метрологии

Под метрологией подразумевается наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности.

Происхождение самого термина «метрология» возводят к двум греческим словам: metron, что переводится как «мера», и logos – «учение». Бурное развитие метрологии пришлось на конец ХХ в. Оно неразрывно связано с развитием новых технологий. До этого метрология была лишь описательным научным предметом. Таким образом, можно сказать, что метрология изучает:

1) методы и средства для учета продукции по следующим показателям: длине, массе, объему, расходу и мощности;

2) измерения физических величин и технических параметров, а также свойств и состава веществ;

3) измерения для контроля и регулирования технологических процессов.

Выделяют несколько основных направлений метрологии:

1) общая теория измерений;

2) системы единиц физических величин;

3) методы и средства измерений;

4) методы определения точности измерений;

5) основы обеспечения единства измерений, а также основы единообразия средств измерения;

6) эталоны и образцовые средства измерений;

7) методы передачи размеров единиц от образцов средств измерения и от эталонов рабочим средствам измерения.

Следует различать также объекты метрологии: 1) единицы измерения величин;

2) средства измерений;

3) методики, используемые для выполнения измерений и т. д.

Метрология включает в себя: во-первых, общие правила, нормы и требования, во-вторых, вопросы, нуждающиеся в государственном регламентировании и контроле. И здесь речь идет о:

1) физических величинах, их единицах, а также об их измерениях;

2) принципах и методах измерений и о средствах измерительной техники;

3) погрешностях средств измерений, методах и средствах обработки результатов измерений с целью исключения погрешностей;

4) обеспечении единства измерений, эталонах, образцах;

5) государственной метрологической службе;

6) методике поверочных схем;

7) рабочих средствах измерений.

В связи с этим задачами метрологии становятся: усовершенствование эталонов, разработка новых методов точных измерений, обеспечение единства и необходимой точности измерений.

2 Классификация измерений

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы. Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей).

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений. Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

3. Основные характеристики измерений

Выделяют следующие основные характеристики измерений:

1) метод, которым проводятся измерения;

2) принцип измерений;

3) погрешность измерений;

4) точность измерений;

5) правильность измерений;

6) достоверность измерений.

Метод измерений – это способ или комплекс способов, посредством которых производится измерение данной величины, т. е. сравнение измеряемой величины с ее мерой согласно принятому принципу измерения.

Существует несколько критериев классификации методов измерений.

1. По способам получения искомого значения измеряемой величины выделяют:

1) прямой метод (осуществляется при помощи прямых, непосредственных измерений);

2) косвенный метод.

2. По приемам измерения выделяют:

1) контактный метод измерения;

2) бесконтактный метод измерения.

Контактный метод измерения основан на непосредственном контакте какой-либо части измерительного прибора с измеряемым объектом.

При бесконтактном методе измерения измерительный прибор не контактирует непосредственно с измеряемым объектом.

3. По приемам сравнения величины с ее мерой выделяют:

1) метод непосредственной оценки;

2) метод сравнения с ее единицей.

Метод непосредственной оценки основан на применении измерительного прибора, показывающего значение измеряемой величины.

Метод сравнения с мерой основан на сравнении объекта измерения с его мерой.

Принцип измерений – это некое физическое явление или их комплекс, на которых базируется измерение.

Погрешность измерения – это разность между результатом измерения величины и настоящим (действительным) значением этой величины.

Точность измерений – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины.

Правильность измерения – это качественная характеристика измерения, которая определяется тем, насколько близка к нулю величина постоянной или фиксировано изменяющейся при многократных измерениях погрешности (систематическая погрешность).

Достоверность измерений – это характеристика, определяющая степень доверия к полученным результатам измерений.

4 Понятие о физической величине Значение систем физических единиц

Физическая величина является понятием как минимум двух наук: физики и метрологии. По определению физическая величина представляет собой некое свойство объекта, процесса, общее для целого ряда объектов по качественным параметрам, отличающееся, однако, в количественном отношении (индивидуальная для каждого объекта). Есть целый ряд классификаций, созданных по различным признакам. Основными из них является деления на:

1) активные и пассивные физические величины – при делении по отношению к сигналам измерительной информации. Причем первые (активные) в данном случае представляют собой величины, которые без использования вспомогательных источников энергии имеют вероятность быть преобразованными в сигнал измерительной информации. А вторые (пассивные) представляют собой такие величины, для измерения которых нужно использовать вспомогательные источники энергии, создающие сигнал измерительной информации;

2) аддитивные (или экстенсивные) и неаддитивные (или интенсивные) физические величины – при делении по признаку аддитивности. Считается, что первые (аддитивные) величины измеряются по частям, кроме того, их можно точно воспроизводить с помощью многозначной меры, основанной на суммировании размеров отдельных мер. А вторые (неаддитивные) величины прямо не измеряются, так как они преобразуются в непосредственное измерение величины или измерение путем косвенных измерений. В 1791 г. Национальным собранием Франции была принята первая в истории система единиц физических величин. Она представляла собой метрическую систему мер. В нее входили: единицы длин, площадей, объемов, вместимостей и веса. А в их основу были положены две общеизвестные ныне единицы: метр и килограмм.

В основу своей методики ученый заложил три основные независимые друг от друга величины: массу, длину, время. А в качестве основных единиц измерения данных величин математик взял миллиграмм, миллиметр и секунду, поскольку все остальные единицы измерения можно с легкостью вычислить с помощью минимальных. Так, на современном этапе развития выделяют следующие основные системы единиц физических величин:

1) система СГС (1881 г.);

2) система МКГСС (конец XIX в.);

3) система МКСА (1901 г.)

5. Международная система единиц

Решениями Генеральной конференции по мерам и весам приняты такие определения основных единиц измерения физических величин:

1) метр считается длинной пути, который проходит свет в вакууме за 1/299 792 458 долю секунды;

2) килограмм считается приравненным к существующему международному прототипу килограмма;

3) секунда равна 919 2631 770 периодам излучения, соответствующего тому переходу, который происходит между двумя так называемыми сверхтонкими уровнями основного состояния атома Cs133;

4) ампер считается мерой той силы неизменяющегося тока, вызывающего на каждом участке проводника длиной 1 м силу взаимодействия при условии прохождения по двум прямолинейным параллельным проводникам, обладающим такими показателями, как ничтожно малая площадь кругового сечения и бесконечная длина, а также расположение на расстоянии в 1 м друг от друга в условиях вакуума;

5) кельвин равен 1/273,16 части термодинамической температуры, так называемой тройной точки воды;

6) моль равен количеству вещества системы, в которую входит такое же количество структурных элементов, что и в атомы в С 12 массой 0,01 2 кг.

Кроме того, Международная система единиц содержит две достаточно важные дополнительные единицы, необходимые для измерения плоского и телесного углов. Так, единица плоского угла – это радиан, или сокращенно рад, представляющий собой угол между двух радиусов окружности, длина дуги между которыми равняется радиусу окружности. Если речь идет о градусах, то радиан равен 57°17" 48"". А стерадиан, или ср, принимаемый за единицу телесного угла, представляет собой, соответственно, телесный угол, расположение вершины которого фиксируется в центре сферы, а площадь, вырезаемая данным углом на поверхности сферы, равна площади квадрата, сторона которого равна длине радиуса сферы. Другие дополнительные единицы СИ используются для формирования единиц угловой скорости, а также углового ускорения и т. д. Радиан и стерадиан используются для теоретических построений и расчетов, поскольку большая часть значимых для практики значений углов в радианах выражаются трансцендентными числами. К внесистемным единицам относятся следующие:

1) за логарифмическую единицу принята десятая часть бела, децибел (дБ);

2) диоптрия – сила света для оптических приборов;

3) реактивная мощность – Вар (ВА);

4) астрономическая единица (а. е.) – 149,6 млн км;

5) световой год, под которым понимается такое расстояние, которое луч света проходит за 1 год;

6) вместимость – литр;

7) площадь – гектар (га).

Существуют также единицы, вообще не входящие в СИ. Это в первую очередь такие единицы, как градус и минута. Все остальные единицы считаются производными, которые согласно Международной системе единиц образуются с помощью самых простейших уравнений с использованием величин, числовые коэффициенты которых приравнены к единице. Если в уравнении числовой коэффициент равен единице, производная единица называется когерентной.

6. Физические величины и измерения

Объектом измерения для метрологии, как правило, являются физические величины. Физические величины используется для характеристики различных объектов, явлений и процессов. Разделяют основные и производные от основных величины. Семь основных и две дополнительных физических величины установлены в Международной системе единиц. Это длина, масса, время, термодинамическая температура, количество вещества, сила света и сила электрического тока, дополнительные единицы – это радиан и стерадиан. У физических величин есть качественные и количественные характеристики.

Качественное различие физических величин отражается в их размерности. Обозначение размерности установлено международным стандартом ИСО, им является символ dim*.

Количественная характеристика объекта измерения – это его размер, полученный в результате измерения. Самый элементарный способ получить сведения о размере определенной величины объекта измерения – это сравнить его с другим объектом. Результатом такого сравнения не будет точная количественная характеристика, оно позволит лишь выяснить, какой из объектов больше (меньше) по размеру. Сравниваться могут не только два, но и большее число размеров. Если размеры объектов измерения расположить по возрастанию или по убыванию, то получится шкала порядка. Процесс сортировки и расположения размеров по возрастанию или по убыванию по шкале порядка называется ранжированием. Для удобства измерений определенные точки на шкале порядка фиксируются и называются опорными, или реперными точками. Фиксированным точкам шкалы порядка могут ставиться в соответствие цифры, которые часто называют баллами.

У реперных шкал порядка есть существенный недостаток: неопределенная величина интервалов между фиксированными реперными точками.

Самым оптимальным вариантом является шкала отношений. Шкалой отношений является, например, шкала температуры Кельвина. На данной шкале есть фиксированное начало отсчета – абсолютный ноль (температура, при которой прекращается тепловое движение молекул). Основное преимущество шкалы отношений состоит в том, что с ее помощью можно определить, во сколько раз один размер больше или меньше другого.

Размер объекта измерения может быть представлен в разных видах. Это зависит от того, на какие интервалы разбита шкала, с помощью которой измеряется данный размер.

Например, время движения может быть представлено в следующих видах: T = 1 ч = 60 мин = 3600 с. Это значения измеряемой величины. 1, 60, 3600 – это числовые значения данной величины.

7. Эталоны и образцовые средства измерений

Все вопросы, связанные охранением, применением и созданием эталонов, а также контроль за их состоянием, решаются по единым правилам, установленным ГОСТом «ГСИ. Эталоны единиц физических величин. Основные положения» и ГОСТом «ГСИ. Эталоны единиц физических величин. Порядок разработки и утверждения, регистрации, хранения и применения». Классифицируются эталоны по принципу подчиненности. По этому параметру эталоны бывают первичные и вторичные.

Вторичный эталон воспроизводит единицу при особенных условиях, заменяя при этих условиях первичный эталон. Он создается и утверждается для целей обеспечения минимального износа государственного эталона. Вторичные эталоны могут делиться по признаку назначения. Так, выделяют:

1) эталоны-копии, предназначенные для передачи размеров единиц рабочим эталонам;

2) эталоны-сравнения, предназначенных для проверки невредимости государственного эталона, а также для целей его заменяя при условии его порчи или утраты;

3) эталоны-свидетели, предназначенные для ели-чения эталонов, которые по ряду различных причин не подлежат непосредственному сличению друг с другом;

4) рабочие эталоны, которые воспроизводят единицу от вторичных эталонов и служат для передачи размера эталону более низкого разряда. Вторичные эталоны создают, утверждают, хранят и применяют министерства и ведомства. \

Существует также понятие «эталон единицы», под которым подразумевают одно средство или комплекс средств измерений, направленных на воспроизведение и хранение единицы для последующей трансляции ее размера нижестоящим средствам измерений, выполненных по особой спецификации и официально утвержденных в установленном порядке в качестве эталона. Есть два способа воспроизведения единиц по признаку зависимости от технико-экономических требований:

1) централизованный способ – с помощью единого для целой страны или же группы стран государственного эталона. Централизованно воспроизводятся все основные единицы и большая часть производных;

2) децентрализованный способ воспроизведения – применим к производным единицам, сведения о размере которых не передаются непосредственным сравнением с эталоном.

Существует также понятие «образцовые средства измерений», которые используются для закономерной трансляции размеров единиц в процессе поверки средств измерения и используются лишь в подразделениях метрологической службы. Разряд образцового средства измерения определяется в ходе измерений метрологической аттестации одним из органов Государственного комитета по стандартам.

Измерение - нахождение значения физической величины опыт­ным путем с помощью специальных технических средств.

От термина «Измерение» происходит термин «измерять». Не сле­дует применять другие термины - «мерить», «обмерять», «замерять», «промерять». Они не вписываются в систему метрологических тер­минов.

Для проведения измерения необходимо наличие: физической величины; метода измерений; средства измерений; оператора; условий, необходимых для измерения.

Цель измерения - получение значения физической величины в форме, наиболее удобной для пользования.

Что понимают под физической величиной, значение которой находят опытным путем?

Физическая величина, как уже отмечалось выше, - это характери­стика физического объекта (физической системы, явления или процесca), общая в качественном отношении для многих физических объектов, но в количественном отношении индивидуальная для каж­дого из них.

Индивидуальность понимается в том смысле, что свойство может для одного объекта в определенное число раз быть больше или мень­ше, чем для другого объекта. Примерами физических величин могут служить плотность, температура плавления, показатель прелом­ления света и многие другие.

Физическая величина характеризуется размером, значением, числовым значением, истинным и действительным значениями.

Размер физической величины - количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу.

Значение физической величины - выражение размера физической величины в виде некоторого числа принятых для нее единиц.

Числовое значение физической величины - отвлеченное число, входящее в значение величины.

«Величина» - многовидовое понятие. Но термином «величина» часто выражают размер конкретной физической величины. Не­правильно говорить «величина скорости», «величина напряжения», так как и скорость, и напряжение являются величинами.

Между размером и значением величины есть разница. Размер величины существует реально. Выразить размер величины можно любой из единиц данной величины при помощи числового значения. Числовое значение изменяется в зависимости от выбранных единиц, тогда как физический размер величины остается неизменным.

Единица физической величины - физическая величина фиксиро­ванного размера, которой условно присвоено числовое значение, равное 1.

Физическую величину характеризует ее истинное значение, которое идеальным образом отражает в качественном и количест­венном отношении соответствующее свойство объекта.

Действительным называют значение физической величины, найденное экспериментальным путем и настолько приближенное к истинному значению, что для данной цели может быть использо­вано вместо него.

Виды измерений. По способу получения числового значения измеряемой величины все измерения делятся на четыре основных вида: прямые, косвенные, совокупные и совместные.

Прямыми называются измерения, при которых искомое значение физической величины получают непосредственно из опытных дан­ных (например, измерение массы на весах, длины детали микро­метром).

Строго говоря, измерение всегда прямое и рассматривается как сравнение величины с ее единицей. В этом случае лучше применять термин «прямой метод измерения».

Косвенные измерения - определение искомого значения физиче­ской величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величи­ной.

Косвенные измерения проводятся в тех случаях, когда:

* значение измеряемой величины легче находить путем косвен­ных измерений, чем путем прямых измерений;

* прямые измерения той или иной величины отсутствуют;

* косвенные измерения дают меньшую погрешность, чем прямые измерения.

Уравнение косвенных измерений: у = f (х (, х 2 ,... х п), где у - искомая величина, являющаяся функцией аргументов х, х 2 ,..., х п, полученных прямыми измерениями.

Примером косвенных измерений является определение твердости (НВ) металлов путем вдавливания стального шарика определенного диаметра (D) с определенной нагрузкой (Р) и получения при этом определенной глубины отпечатка (h): НВ = P/(tcD h).

Совокупными называются проводимые одновременно измерения нескольких одноименных величин, при которых значения искомых величин находят решением системы уравнений, получаемых при прямых измерениях.

Например, измерения, при которых массы отдельных гирь набо­ра находят по известной массе одной из них и по результатам пря­мых сравнений масс различных сочетаний гирь.

Совместные измерения - это производимые одновременно измерения двух или нескольких неодноименных величин для нахож­дения функциональной зависимости между ними. Например, опре­деления зависимости длины тела от температуры, температур кипе­ния и плавления от давления и т.д.

Измерения могут быть классифицированы:

а) по характеристике точности - равноточные (ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерения и в одних и тех же условиях) и неравноточные (ряд измерений какой-либо величины, выполненных несколькими
различными по точности средствами измерения и (или) в нескольких разных условиях);

б) по числу измерений в ряду измерений - однократные и много кратные;

в) по отношению к изменению измеряемой величины - статические (измерение неизмененной во времени физической величины, например, измерение длины детали при нормальной температуре или измерение размеров земельного участка) и динамические (измерение изменяющейся по размеру физической величины, например,
измерение переменного напряжения электрического тока, измерение
расстояния до уровня земли со снижающегося самолета);

г) по выражению результата измерения - абсолютные (измерение, основанное на прямых измерениях величин и (или) использовании значений физических констант, например, измерение силы F основано на измерении основной величины массы m и использовании физической постоянной - ускорения свободного падения g) и относительные (измерение отношения величины к одноименной вели­чине, выполняющей роль единицы).

Измерить состав или свойство веществ или измерить физическую величину можно, используя тот или иной метод измерения.

Метод измерения - это прием или совокупность приемов срав­нения измеряемого состава или свойства вещества или измеряемой физической величины с известным составом или свойством вещества или с единицей физической величины в соответствии с реализован­ным принципом измерений.

Принцип измерений - это явление или эффект, положенные в основу измерений.

Рассмотрим некоторые принципы, которые положены в основу измерений.

Если нагревать места спая двух электродов из разнообразных материалов, то возникает ЭДС. Указанное явление положено в осно­ву измерения температуры с высокой точностью (термопары).

При нагревании электрических проводников и полупроводников изменяется их сопротивление. Это явление позволяет получать высо­кую точность измерения температуры, особенно с применением платины. Применение полупроводников дает возможность измерять малые интервалы температур и температуру тел, имеющих очень малые объемы.

При растяжении или сжатии некоторых материалов изменяется их электрическое сопротивление, что положено в основу измерения малых деформаций тел, а также высокого и сверхвысокого давлений. На границе металла и полупроводника при освещении возникает ЭДС, так называемый фотоэлектрический эффект. На использо­вании фотоэффекта основаны фотоэлементы, которые применяются во многих средствах измерений.

Яркость свечения тела зависит от температуры, которая, в свою очередь, зависит от силы тока, накаливающего тело. На этом явле­нии основан бесконтактный метод измерения температуры (опти­ческий пирометр).

Динамическое измерение -- измерение величины, размер которой изменяется с течением времени. Быстрое изменение размера измеряемой величины требует ее измерения с точнейшим определением момента времени.

Например, измерение расстояния до уровня поверхности Земли с воздушного шара или измерение постоянного напряжения электрического тока. По существу динамическое измерение является измерением функциональной зависимости измеряемой величины от времени .

Признаком, по которому измерение относят к статическому или динамическому, является динамическая погрешность при данной скорости или частоте изменения измеряемой величины и заданных динамических свойствах СИ. Предположим, что она пренебрежимо мала (для решаемой измерительной задачи), в этом случае измерение можно считать статическим. При невыполнении указанных требований оно является динамическим.

Динамическая погрешность измерений - погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средства измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Статические измерения

Статическое измерение -- измерение величины, которая принимается в соответствии с поставленной измерительной задачей за неизменяющуюся на протяжении периода измерения.

Например: 1) измерения размеров тела;

2) измерения постоянного давления;

3) измерения пульсирующих давлений, вибраций;

4) измерение линейного размера изготовленного изделия при нормальной температуре можно считать статическим, поскольку колебания температуры в цехе на уровне десятых долей градуса вносят погрешность измерений не более 10 мкм/м, несущественную по сравнению с погрешностью изготовления детали. Поэтому в этой измерительной задаче можно считать измеряемую величину неизменной. При калибровке штриховой меры длины на государственном первичном эталоне термостатирование обеспечивает стабильность поддержания температуры на уровне 0,005 °С. Такие колебания температуры обусловливают в тысячу раз меньшую погрешность измерений -- не более 0,01 мкм/м. Но в данной измерительной задаче она является существенной, и учет изменений температуры в процессе измерений становится условием обеспечения требуемой точности измерений, поэтому эти измерения следует проводить по методике динамических измерений.

Статическая погрешность измерений - погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей.



Copyright © 2024 Медицинский портал - Здравник.