Производство Бутилового спирта (бутанол) из Этилового спирта (этанол) через Ацетальдегид (уксусный альдегид). Этанол - что это? Свойства этанола

При помощи Акцизного законодательства Правительство РФ ограничило производство этилового спирта в качестве моторного топлива, установив высокую ставку Акциза на этиловый спирт. Технология производства бутанола из этилового спирта проста. Производство бутанола свободно от акцизного налога. Глава «Ростехнологий» Сергей Чемезов уверен, что биобутанол Тулунского гидролизного завода будет пользоваться большим спросом. Бутанолом заправили три автомобиля, которые совершили автопробег Иркутск – Тольятти

1. Окисление Этанола для получения Ацетальдегида (уксусного альдегида)

Основной промышленный метод производства ацетальдегида CH 3 CHO - это окисление этилена в присутствии водных растворов хлоридов палладия и меди . Процесс называют жидкофазным окислением этилена кислородом, которые пропускают через водный раствор PdCl 2 и СuСl 2 , затем выделяют ректификацией; выход около 98%. В 2003 глобальное производство Ацетальдегида было около миллиона тонн в год.

2 CH 2 =CH 2 + O 2 → 2 CH 3 CHO

Однако у этого процесса есть ряд недостатков. Этот метод характеризуется образованием целого ряда токсичных побочных продуктов, таких как метил-хлорид, этил-хлорид и хлор-ацетальдегид, которые необходимо утилизировать или подвергать специальной обработке для предотвращения загрязнения окружающей среды. Помимо этого образуются уксусная кислота и кротоновый альдегид, которые растворены в огромных количествах воды, необходимой для выделения полученного ацетальдегида из смеси газообразных продуктов. Так, на 1 тонну полученного ацетальдегида приходится 8 - 10 м3 сточных вод . Кроме того, используемый в данном процессе в качестве исходного сырья этилен, производство которого основано на переработке нефтяного сырья, продолжает дорожать. Контрактные цены на этилен на европейском рынке в IV квартале 2004 года составили 700 евро за тонну, что на 70 евро выше, чем в предыдущем квартале, а в сентябре 2004 года был отмечен пиковый уровень цен, находившийся на уровне 1020 евро за тонну.

Наряду с этим, не потерял практического значения, процесс получения Ацетальдегида каталитическим дегидрированием Этилового спирта (этанола) , широко применявшийся в 60-70-х прошлого столетия . Этот метод имеет ряд преимуществ, таких как: отсутствие ядовитых отходов, достаточно мягкие условия проведения процесса и образование наряду с ацетальдегидом водорода, который может быть использован в других процессах. Исходным сырьём является только этиловый спирт,

Ацетальдегид (уксусный альдегид) производится из этилового спирта каталитическим отщеплением водорода при ~400°С. Гидрогенизация и дегидрогенизация - важные методы каталитического синтеза различных органических веществ, основанные на реакциях окислительно-восстановительного типа, связанных подвижным равновесием

C 2 H 5 OH CH 3 CHO + H 2

Повышение температуры и понижение давления H 2 способствуют образованию ацетальдегида, а понижение температуры и повышение давления H 2 - образованию этилового спирта; такое влияние условий типично для всех реакций гидрогенизация и дегидрогенизации. Катализаторами гидрогенизации и дегидрогенизации являются многие металлы (Fe , Ni, Со, Pt, Pd, Os и др.), окислы (Ni O , Co O , Cr 2 O 3 , Mo O 2 и др.), а также сульфиды (W S 2 , Mo S 2 , Cr n S m ).

Дегидрирование спиртов - один из простейших примеров дегидрогенизации. При пропускании первичных или вторичных спиртов над поверхностью мелко раздробленных металлов (медь или железо) от спиртового углерода и кислорода гидроксильной группы отщепляются атомы водорода (реакция дегидрирования). При этом образуется газообразный водород и из первичного спирта - альдегид, а из вторичного - кетон. Значительное количество ацетальдегида в России производилось дегидрогенизацией из

Для справки:

Ацетальдегид (уксусный альдегид) - основной продукт расщепления этанола.

Ацетальдегид (уксусный альдегид) образуется путем окисления этанола, причем реакция окисления этанола катализируется / ускоряется главным образом с помощью алкогольдегидрогеназы. Например , в печени человека энзим (т.е. фермент) алкогольдегидрогеназа окисляет этанол в ацетальдегид, который далее окисляется в безопасную уксусную кислоту посредством цетальдегиддегидророгеназы. Эти две реакции окисления связаны с восстановлением NAD + в NADH

Во время действия на этиловый спирт указанных на схеме ферментов - алкогольдегидрогеназы и альдегиддегидрогеназы - в процессе метаболизма должно участвовать ещё одно вещество. Это - производное никотиновой кислоты NAD. NAD способствует включению в обменные процессы (сжиганию) как алкоголя, так и ацетальдегида, сам при этом преобразуясь в другое вещество - NADH. Чтобы переработка этилового спирта не прерывалась, печень должна превращать NADH в NAD.

Если оба процесса, изображенные в нижней части схемы преобразования этилового спирта в ацетат, проходят эффективно, организму не будут угрожать неприятные последствия принятия алкоголя, известные как похмелье, - за некоторыми исключениями, с которыми можно справиться.

Если бы мы пили чистый этиловый спирт (пусть и разбавленный водой), то описанное выше - это все, что требуется от печени. К сожалению, напитки, которые мы пьем вечером или за обедом, не столь чисты. Полученные перегонкой или сбраживанием, они содержат токсичные химические вещества. Это так называемые примеси - то есть сопутствующие этиловому спирту вещества. К ним относятся сивушные масла, органические кислоты и даже альдегиды. Среди этих веществ встречаются настолько токсичные, что прием их в чистом виде привел бы к смертельному исходу. Чтобы избежать такой опасности, лучше всего пить максимально чистый алкоголь - то есть белое вино вместо красного, водку вместо виски. Для восстановления хорошего самочувствия примеси, попадающие в организм с алкоголем, должны быть включены в обменные процессы или уничтожены вместе со спиртом и его побочными продуктами.
С учетом вышесказанного очень важны некоторые альтернативные методы борьбы с похмельем . Во-первых, скорость поступления алкоголя в организм должна соответствовать его способности перерабатывать спирт в ацетальдегид и далее - в ацетат. Способность эта повышается, если заранее как следует поесть, причем выбор блюд безразличен. Жирная пища смазывает стенки желудка и двенадцатиперстной кишки и замедляет всасывание алкоголя, белки помогают нормализовать обменные процессы, а углеводы адсорбируют алкоголь в желудке и снижают интенсивность его поступления в кровоток и мышечную ткань.
Во-вторых, если в напитке есть примеси - скажем, альдегиды, - от них следует избавиться. Перед нами два пути. Предпочтительней - собрать и абсорбировать ацетальдегид до того, как он попадет в кровь (то же относится к ацетату). Для этого подойдет древесный уголь - прекрасный адсорбент . Не менее известны обыкновенным любителям выпить так называемые хелатные соединения, которые содержатся, например, в капусте. Эти вещества связывают вредные элементы и выводят их из организма. Такое же действие и у витамина С.

Второй менее желательный путь - переработка токсинов в организме в результате обмена веществ. Этот метод не столь эффективен: могут возникнуть сложности в завершении цикла преобразования NAD - NADH - NAD, содействующего метаболизму. Тут может помочь фруктоза, которой изобилует мед, и кислород.

Биотехнология позволяет производить этиловый спирт по экологически чистым технологиям из содержащих крахмал зерновых культур, а также сельскохозяйственных культур, содержащих сахара, из органических отходов и биомассы (целлюлозы) путём их гидролиза / конверсии ферментами микробного происхождения. При этом растительная биомасса (целлюлоза), роль которой в промышленном органическом синтезе постоянно увеличивается по мере истощения запасов нефти и газа, является возобновляемым источником органического сырья и благодаря огромному ежегодному приросту, способна полностью решить человеческие потребности в топливе и химических продуктах. Возможность использования для биологической переработки отходов и побочных продуктов позволяет создавать практически безотходные производства . Кроме того, по данным с официального сайта Датской компании "Novozymes", 14.04.2005, www.novozvmes.com , последние успехи ферментной промышленности приводят к значительному удешевлению производства биоэтанола. На рынке США оптовые цены на биоэтанол, упали на 20% по сравнению с сентябрём 2004 года и составили 44 доллара за баррель на начало апреля 2005 года. Полученный таким образом биоэтанол, в свете последних тенденций по снижению и постепенному отказу от использования нефтяного сырья, становится очень перспективным промежуточным продуктом органического синтеза и может применяться для производства ценных химических соединений, в частности для синтеза ацетальдегида.

2. Получение Бутанола из Ацетальдегида (уксусного альдегида)

В США ежегодно производится около 1,39 млрд литров бутанола. Из ацетальдегида (уксусного альдегида) через ацетальдоль и кротоновый альдегид (альдольная и кротоновая конденсация), который гидрируют на медных, меднохромовых или никелевых катализаторах.

Реакциями конденсациии обычно называют различные процессы уплотнения органических молекул, приводящие к образованию более сложных соединений в результате возникновения новых связей между углеродными атомами.

В качестве примера приведем конденсацию уксусного альдегида под влиянием разбавленных щелочей (А.П. Бородин, 1863-1873), при которой в реакцию вступают две молекулы альдегида; одна реагирует с карбонильной группой, а вторая - с углеродным атомом в а-положении к карбонильной группе, содержащим подвижный атом углерода, по схеме

В результате возникает новая углерод-углеродная связь и образуется вещество, содержащее одновременно альдегидную и спиртовую группы; оно было названо альдолем (Альдоль - сокращенное название от слова альдегидоальдоль , т.е альдегидоспирт), а конденсация карбонильных соединений, протекающая по такому пути и приводящая к веществам типа альдоля, называется реакцией альдольной конденсации.

В альдольной конденсации могут участвовать и молекулы разных альдегидов, и молекулы альдегидов и кетонов. Последние вступают в реакцию за счет атомов углерода и водорода, находящихся в α-положении к их карбонильной группе; сама же карбонильная группа в этих реакциях менее активна, чем карбонильная группа альдегидов.

При соответствующих условиях реакция альдольной конденсации двух молекул альдегида или молекулы альдегида и кетона не останавливаются на образовании альдоля; она может идти дальше с отщеплением воды за счет подвижного водорода в α-положении к карбонильной группе и гидроксила при β-углеродном атоме (т.е. при втором от карбонильной группы). В этом случае, в результате взаимодействия двух молекул альдегида, через альдоль образуется непредельный (кротоновый) альдегид.

Из уксусного альдегида (ацетальдегида) получают таким образом кротоновый альдегид, от названия которого конденсация молекул карбонильных соединений, протекающая с выделением воды, получила название кротоновой конденсации

Получение спиртов из альдегидов и кетонов.

Мы уже видели, что при окислении первичных и вторичных спиртов образуются вещества с карбонильной группой - альдегиды и кетоны. Альдегиды и кетоны при действии на них водорода в момент выделения* вновь восстанавливаются в спирты. При этом двойная связь карбонильной группы разрывается и один атом углерода присоединяется к углероду, а второй к кислороду. В результате карбонильная группа переходит в спиртовую.

* Газообразный водород Н 2 в обычных условиях инертен. Весьма активен атомарный водород, выделяющийся в процессе реакции какого либо соединения. Такой водород называют водородом в момент выделения.

3. Окислительное дегидрирование этилового спирта в ацетальдегид на катализаторе Сибунит

Для эффективной реализации процесса дегидрирования этилового спирта в ацетальдегид со всеми вышеперечисленными преимуществами необходима разработка новых высокоактивных, селективных и стабильных каталитических систем. Это позволит перейти на более экологически чистый, а также, что немаловажно, независящий от нефтяного сырья, способ получения ацетальдегида, что благоприятно отразится на экономике процесса.

Важным этапом разработки каталитических систем является поиск носителя для катализатора, который оказывает большое влияние на структуру и каталитические свойства систем. В последнее время всё более широко в гетерогенно-каталитических процессах используются углеродные материалы различных видов, такие как: графит, кокс, углеродные волокна, алмаз, различные виды сажи и активные угли . Одним из наиболее перспективных для использования в катализе является углеродный материал сибунит, представляющий собой новый класс пористых углерод-углеродных композиционных материалов. Он сочетает в себе преимущества как графита (химическая стабильность, электропроводность), так и активных углей (высокая поверхность и адсорбционная емкость). Кроме того, очень важным преимуществом является его высокая химическая чистота. Доля минеральных примесей в сибуните составляет не более 1%, тогда как у основной гаммы активных углей зольность составляет 5% и выше, что оказывает существенное благоприятное влияние на селективность каталитических систем, приготовленных на основе сибунита. Данная диссертационная работа посвящена разработке новых активных и селективных катализаторов для процесса синтеза ацетальдегида дегидрированием этилового спирта с использованием в качестве носителя углеродного материала сибунит, а также определению оптимальных условий проведения процесса для обеспечения эффективности, необходимой для промышленного применения. Работа выполнена на кафедре Технологии нефтехимического синтеза и искусственного жидкого топлива им. А.Н. Башкирова Московской государственной академии тонкой химической технологии им. М.В. Ломоносова в соответствии с программой «Научные исследования высшей школы по приоритетным направлениям науки и техники». Научная новизна. Впервые систематически исследован процесс синтеза ацетальдегида дегидрированием этилового спирта в присутствии медьсодержащих катализаторов на основе углерод-углеродного композиционного материала сибунит. Впервые показано, что медьсодержащий катализатор на основе сибунита наиболее эффективен в реакции дегидрирования этанола, так как в отличие от оксидных носителей, в присутствии сибунита не протекают побочные реакции, что позволило повысить селективность изученных катализаторов в процессе синтеза ацетальдегида. Исследованы каталитические свойства медьсодержащих систем на основе сибунита в зависимости от условий их предварительной обработки и наличия промотирующих добавок. Практическая ценность. Разработаны эффективные медьсодержащие каталитические системы синтеза ацетальдегида на основе углерод-углеродного композиционного материала сибунит. Разработаны рекомендации по технологическому оформлению процесса синтеза ацетальдегида каталитическим дегидрированием этанола, которые могут быть использованы при проектировании производственных установок. Основное содержание диссертации изложено в следующих публикациях: Г. Егорова Е.В., Трусов А.И., Нугманов Е.Р., Антонюк Н., Французов В.К. Использование углеродных материалов в качестве носителей для катализаторов дегидрирования низкомолекулярных спиртов"

5. Получение бутанола. Паровое окисление диэтилового эфира.

Образование сложных эфиров.

Спирты реагируют с кислотами; при этом выделяется вода и образуются сложные эфиры. Взаимодействие спиртов с кислотами называют реакцией этерификации. С органическими карбоновыми кислотами она протекает по схеме

Как мы увидим дальше, сложные эфиры легко подвергаются гидролизу, т. е. под действием воды разлагаются на исходные спирт и кислоту, поэтому реакция этерификации обратима и доходит до состояния химического равновесия. Более подробно на этой реакции, так же как и на свойствах сложных эфиров, мы остановимся, когда ознакомимся с органическими кислотами. Здесь лишь отметим, что течение реакции этерификации, как показал Н. А. Меншуткин (1877), зависит от строения спирта и кислоты; легче всего этерификации подвергаются первичные спирты, труднее - вторичные и наиболее трудно этерифицируются третичные спирты.

Спирты образуют сложные эфиры и с неорганическими (минеральными) кислотами. Так, известны эфиры азотной кислоты (азотнокислые эфиры)

При взаимодействии спиртов с многоосновными кислотами, если в реакцию вступает только одна гидроксильная группа кислоты, образуются кислые сложные эфиры. Например, двухосновная серная кислота образует кислые эфиры, называемые алкилсерными кислотами

Алкилсерные кислоты образуются как промежуточные продукты при реакциях гидратации непредельных углеводородов и дегидратации спиртов под действием серной кислоты.

При действии водоотнимающих средств, например, при нагревании с концентрированной серной кислотой спирты теряют молекулу воды; причем в зависимости от температуры реакции и количественных соотношений спирта и серной кислоты возможны два случая дегидратации. В одном из них отнятие воды происходит внутримолекулярно, т. е. за счет одной молекулы спирта, с образованием этиленового углеводорода

В другом случае, при избытке спирта, дегидратация протекает межмолекулярно, т. е. путем выделения молекулы воды за счет гидроксильных групп двух молекул спирта; при этом образуются так называемые простые эфиры :

Роль серной кислоты при внутримолекулярной дегидратации спиртов, приводящей к получению этиленовых углеводородов, уже рассмотрена,

Диэтиловый (этиловый) эфир. Имеет очень большое практическое значение; его обычно называют просто эфиром. Получается главным образом дегидратацией этилового спирта при действии концентрированной серной кислоты. Этим методом диэтиловый эфир был получен впервые еще в 1540 г. В. Кордусом; долгое время диэтиловый эфир неправильно называли серным эфиром, так как предполагали, что он должен содержать серу. В настоящее время диэтиловый эфир получают так же, пропуская пары этилового спирта над окисью алюминия

Al 2 О 3 , нагретой до 240-260°С.

Диэтиловый эфир - бесцветная легколетучая жидкость с характерным запахом. Темп. кип. 35,6°С, темп, замерзания - 117,6°С; сР=0,714, т. е. эфир легче воды. Если его встряхивать с водой, то затем при стоянии эфир «отслаивается» и всплывает на поверхность воды, образуя верхний слой. Однако при этом некоторое количество эфира растворяется в воде (6,5 ч. в 100 ч. воды при 20°С). В свою очередь при той же температуре в 100 ч. эфира растворяется 1,25 ч. воды. Со спиртом эфир смешивается очень хорошо.

Важно иметь в виду, что обращаться с эфиром надо осторожно: он очень горюч, а пары его с воздухом образуют взрывоопасные - гремучие смеси. Кроме того, при длительном хранении, особенно на свету, эфир окисляется кислородом воздуха и в нем образуются так называемые перекисные соединения*; последние от нагревания могут разлагаться со взрывом. Такие взрывы возможны при перегонке долго стоявшего эфира.

Иодистоводородная кислота разлагает простые эфиры; в результате получаются галогеналкил (иодопроизводное) и спирт

Синтез Вюртца заключается в получении углеводородов из галогенопроизводных при действии на них металлического натрия. Реакция протекает по схеме

Например,

Из бутана методом изомеризации может быть получен изобутан, который может служить сырьем для получения изобутилена методом дегидрирования изобутана. Последующей этерификацией изобутилена этиловым спиртом получают кислородосодержащую добавку к бензину - экологически чистый этил-трет-бутиловый эфир (ЭТБЭ), имеющий октановое число 112 пунктов (Исследовательский метод).

Физические свойствапервичных галогеналкилов с нормальной цепью

Хлористый Бромистый Йодистый
название строение температура кип., °С d 4 20 температура кип., °С d 4 20 температура кип., °С d 4 20
Метил СН 3 - -23,7 0,992* +4,5 1,732** + 42,5 2,279
Этил СН 3 - СН 2 - + 13,1 0,926*** +38,4 1,461 +72,3 1,936
Пропил СН 3 - СН 2 - СН 2 - + 46,6 0,892 +71,0 1,351 + 102,5 1,749
Бутил СНз - (СН 2) 2 - СН 2 - +78,5 0,887 + 101,6 1,276 + 130,4 1,615
Амил СН 3 - (СН 2) 2 - СН 2 - + 108,4 0,878 + 127,9 1,218 +154,2 1,510
Гексил СН 3 - (СН 2) 4 - СН 2 - + 132,9 0,876 + 153,2 1,176 + 177,0 1,439

* При температуре кипения.

*** d 4 0

В присутствии катализаторов при высокой температуре происходит отщепление водорода (реакция дегидрирования) от молекул предельных углеводородов с образованием двойных связей. Так, при пропускании бутана над катализатором, содержащим окислы тяжелых металлов (например, Cr 2 O 3 ), при температурах 400 - 600º образуется смесь бутиленов

Таблица. Изомерия и номенклатура бутиленов

Присоединение воды (реакция гидратации). В обычных условиях этиленовые углеводороды не реагируют с водой, но при нагревании в присутствии катализаторов (хлористый цинк, серная кислота) элементы воды (водород и гидроксил) присоединяются к углеродным атомам по месту двойной связи с образованием спиртов

С гомологами этилена реакция протекает по правилу Морковникова: водород воды присоединяется к тому углероду, при котором больше атомов углерода, а гидроксил - к углероду, при котором атомов водорода меньше или совсем нет.

Этот метод дает особую возможность использовать в качестве сырья для получения бутана, бутилового спирта... этиловый спирт

Большой интерес представляет производство изобутилена из этилового спирта. Вначале, из этилового спирта получают нормальный бутан (н-бутан), как описано выше. Из н-бутана изомеризацией на катализаторе получают изобутан . Из изобутана получают изобутилен - как сырье для производства антидетонационной добавки в бензин этил-трет-бутилового эфира ЕТБЕ. Этот метод дает особую возможность использовать в качестве сырья для получения изобутилена... этиловый спирт. Таким образом, для получения ЕТБЕ используется только этиловый спирт без изобутилена.

1. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза. 4-е изд. М.: Химия, 1988. 592 с.
2. Тимофеев B.C., Серафимов Л.А. Принципы технологии основного органического и нефтехимического синтеза. 2-е изд. М.: Высшая школа, 2003. 536 с.
3. Steppich W., Sartorius R. Process for the manufacture of acetaldehyde. US Patent 4237073, Dec. 2, 1980 (US CI. 568/401).
4. Хчеян X.E., Ланге C.A., Иоффе А.Э., Аврех Г.Л. Производство ацетальдегида. М.: ЦНИИТЭ Нефтехим, 1979. 40 с.
5. Кузнецов Б.Н. Растительная биомасса альтернативное сырьё для малотоннажного органического синтеза Рос. хим. журнал (Ж. Рос. хим. об-ва им. Д.И.Менделеева). 2003, т. XLVII, 6. 3.
6. Кухаренко А.А., Винаров А.Ю., Сидоренко Т.Е., Бояринов А.И. Интенсификация микробиологического процесса получения этанола из крахмал- и целлюлозосодержащего сырья. М., 1999. 90 с.
7. Плаксин Г.В. Пористые углеродные материалы типа сибунит. Химия в интересах устойчивого развития. 2001, №9. 609-620.
8. Семиколенов В.А. Современные подходы к приготовлению катализаторов «Паллади!! на угле». Успехи химии. 1992, т. 61, вып. 2. 320-331.
9. Berg World fuel ethanol analysis and outlook "P.O. Licht" agency. http://www.distill.com/World-Fuel-Ethanol-A&O-2004.html lO.Berg C. World ethanol production and trade to 2000 and beyond "P.O. Licht" agency. http://www.distill.eom/ber.g/ П.Волков B.B., Фадеев А.Г., Хотимский B.C., Бузин О.И., Цодиков М.В., Яндиева Ф.А., Моисеев И.И. Экологически чистое топливо из биомассы Рос. хим. журнал (Ж. Рос. хим. об-ва им. Д.И.Менделеева). 2003, т. XLVII, 6. С 71-82. 188
10. Кадиева А.Т. Разработка интенсивной технологии этанола на основе целенаправленного применения мультиэнзимных систем и новых рас спиртовых дрожжей: Дис....канд. тех. наук. Москва, 2003.
11. Лукерченко В.Н. Некрахмалистые углеводы зерна и их значение для спиртового производства Пищевая промышленность. 2000, №1. 62-63.
12. Римарёва Л.В. Технология получения перспективных ферментных препаратов и особенности их применения в спиртовой промышленности Современные и прогрессивные технологии и оборудование в спиртовой и ликёроводочной промышленности 2-я Международная научно-практическая конференция. М.: Пищепромиздат, 2000. 48-63. 1 З.Калинина О.А. Разработка ресурсосберегающей технологии получения этанола из зерна ржи: Дис....канд. тех. наук. Москва, 2002.
13. Лихтенберг Л.А. Производство спирта из зерна Пищевая промышленность. -2000, 7 С 52-54.
14. Технология спирта. Под ред. В.Л. Яровенко, М.: Колос, 1999. 464 с.
15. Римарёва Л.В., Оверченко М.Б., Трифонова В.В., Игнатова Н.И. Осмофильные дрожжи для сбраживания высококонцентрированного сусла Производство спирта и ликероводочных изделий. 2001, №1. 21-23.
16. Бондаренко В.А., Касперович В.Л., Буцко В.А., Манеева Э.Ш. Способ подготовки зернового крахмалсодержащего сырья для спиртового брожения. Патент РФ №2145354, заявл. 24.11.1998, опубл. 10.02.2000 (МПК С12 Р7/06).
17. Свиридов Б.Д., Лебедев Ю.А., Зарипов Р.Х., Кутепов A.M., Антонюк А.В. Способ производства этилового спирта из зернового сырья. Патент РФ 2165456, заявл. 19.05.2000, опубл. 20.04.2001 (МПК С12 Р7/06).
18. Тимошкина Н.Е., Кретечникова А.Н., Имьяшенко Н.Г., Шаненко Е.Ф., Гернет М.В., Кирдяшкин В.В. Способ обработки дрожжей. Патент РФ №2163636, заявл. 30.03.2000, опубл. 27.02.2001 (МПК С12 N1/16).
19. Журба О.С. Разработка новой технологии этанола на основе интенсивных способов переработки зерна пшеницы: Дис....канд. тех. наук. Москва, 2004. 189
20. Васильева Н.Я., Римарёва Л.В. Сбраживание крахмалсодержащего сырья анаэробными бактериями рода Zymomonas Производство спирта и ликёроводочных изделий. 2001, №1. 18-20. 25.Фёдоров А.Д., Кесель Б.А., Дьяконский П.И., Наумова Р.П., Зарипова К., Весельев Д.А. Способ получения этилового спирта. Патент РФ 2138555, заявл. 05.12.1997, опубл. 27.09.1999 (МПК С12 Р7/06).
21. Леденёв В.П. Состояние и задачи по совершенствованию технологии производства спирта из зерна на заводах РФ. Ферменты в пищевой промыщленности. Тезисы конференции. М., 1999. 22-27.
22. Mulder M.H.V., Smolders А., Bargeman D. Membraan filtratie bij de produktie van ethanol PT Procestechniek. 1981, 36, №12. P. 604-607.
23. Mori Y., Inaba T. Ethanol production firom starch in a pervaporation membrane bioreactor using Clostridium thermohydrosulfuricum Biotechnology and Bioengineering. 1990, v. 36, 8. P.849-853.
24. Gamil A. Conversion of sugar-beet particles to ethanol by the bacterium Zymomonas mobilis in solid-state fermentation Biotechnology Letters. 1992, 14, 6 P 499-504.
25. Saxena A, Garg S.K., Verma J. Simultaneous saccharificatiom and fermentation of waste newspaper to ethanol Bioresour. Technology. 1992, 42, 1. P. 13-15.
26. Grohmann K., Baldwon E. A., Buslig B. S. Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyces cerevisiae //Applied Biochemistry and Biotechnology A. 1994, 45-46. P. 315-327.
27. Мангуева 3.M. Закономерности роста клеточной культуры Saccharomyces cerevisiae (vini)Y 2217 в биосинтезе этанола из абрикосового сусла: Автореферат Дис. канд. хим. наук. Махачкала, 2004. 190
28. Tolan J.S. logens process for producing ethanol from cellulosic biomass Clean Techn. Environ. Policy. 2002, №3. p. 339-345.
29. Локтев СМ., Корнеева Г.А., Мосесов А.Ш., Куимова М.Е. Получение продуктов основного органического синтеза из простейших соединений углерода. М.: ВНТИЦентер, 1985. 132 с. Зб.Путов Н.М. Производство уксусной кислоты и уксусного ангидрида за рубежом. М.: Госхимиздат, 1948. 56 с.
30. Кальфус М.К., Хасанов А.С. Промышленное жидкофазное окисление ацетальдегида в уксусную кислоту. Алма-Ата, 1958. 16 с.
31. Чащин A.M., Глухарёва М.И. Производство ацетатных растворителей в лесохимической промышленности. М.: Лес. промышленность, 1984. 240 с.
32. Черняк Б.И., Савицкий Ю.В., Ерновский Н.П., Ввасиленко О.Р., Кибин Ф.С, Вине В.В., Кравцов Н.И. Способ получения этилацетата. RU 2035450 С1, заяв. 01.04.1991, опуб. 20.05.1995 (МПК С07 С69/14).
33. Wittcoff Н.А. Acetaldehyde: а chemical whose fortunes have changed Journal of chemical education. 1983, 60, №12. P. 1044-1047.
34. Ялтер Ю.А., Бродский М.С, Фельдман Б.М. Способ получения глиоксаля, А.С. №549457, заяв. 08.08.1974, опуб. 05.03.1977 (МПК С07 С47/127). 42,Lehmann R.L., Lintner J. Manufacture of glyoxal and polyglyoxal. US Patent 2599355, June 3, 1952 (US CI. 568/458).
35. Химическая энциклопедия: В 5 т.: т. 3. Ред. Кол.: Кнунянц И.Л. (гл; ред.) и др. М.: Большая Российская Энциклопедия, 1992. 639 с. 44.Еек L. Process for preparation of pentaerythritol. US Patent 5741956, Apr. 21, 1998 (US CI. 568/853).
36. Vebel H.I., Moll K.K., Muchlstacdt M. Preparation of 3-methylpyridine Chemishe Technik. 1970,22, №12. P. 745-752.
37. Динкель P. Способ получения 3-пиколина. SU 1095876 A, заяв. 22.05.1981, опуб. 30.05.1984 (МПК С07 D213/10). 191
38. Ladd Е.С. Production of ketoesters. US Patent 2533944, Dec. 12, 1950 (US CI. 560/238).
39. Виноградов М.Г., Никишин Г.И., Степанова Г.А., Маркевич B.C., Маркевич СМ., Байбурский В.Л. Способ получения у-ацетопропилацетата. А.С. 504753, заяв. 19.03.1973, опуб. 28.02.1976 (МПК С07 С69/14).
40. Аникеев И.К., Мадиярова Х.Ш., Нефёдов О.М., Никишин Г.И., Долгий И.Е., Виноградов М.Г. Способ получения ацетата ацетопропилового спирта. А.С. 614091, заяв. 09.06.1975, опуб. 05.07.1978 (МПК С07 С69/14).
41. Tustin G.C., Zoeller J.R., Depew L.S. Process of preparation of vinyl acetate. US Patent 5719315, Feb. 17, 1998 (US CI. 560/238). 52. Wan C.-G. Preparation of vinyl acetate. GB 2013184 A, Dec. 29, 1978 (МПК C07 C69/15).
42. Eller K., Fiege В., Henne A., Kneuper H.-J. Preparation of Nethyldiisopropylamine. US Patent 6111141, Aug. 29, 2000 (US CI. 564/473).
43. Wakasugi Т., Miyakawa Т., Suzuki F. Process for the manufacture of monochloroacetaldehyde trimer and chloral. US Patent 5414139, May 9, 1995 (US CI. 568/466).
44. Dhingra Y.R. Alpha chlorination of acid chlorides. US Patent 3751461, Aug. 7, 1973 (US CI. 562/864).
45. Ebmeyer F., Metzenthin Т., Siegemund G. Process for the preparation of trichloroacetyl chloride. US Patent 5659078, Aug. 19, 1997 (US CI. 562/864). 57.Abe Т., Gotoh Т., Uchiyama Т., Hoguchi H., Shima Y., Ikemoto K. Process for preparing lactate. US Patent 5824818, Oct. 20, 1998 (US CI. 560/179).
46. Young D.C. Oxidation of olefins. US Patent 3850990, Nov. 26, 1974 (US CI. 568/449).
47. Copelin H.B. Process for producing acetaldehyde from ethylene. US Patent 3531531, Sep. 29, 1970 (US CI. 568/484). 192
48. Робинсон Д.В. Способ получения карбонильных соединений. А.С. 444359, заяв. 07.12.1972, опуб. 25.09.1974 (МПК С07 С47/07).
49. Nishimura Y., Yamada М., Arikawa Y., Kamiguchi Т., Kuwahara Т., Tanimoto Н. Process for producing acetaldehyde. US Patent 4521631, Jun. 4, 1985 (US CI. 568/478).
50. Сокольский Д.В., Нургожаева Ш.Х., Шеховцев В.В. Способ получения ацетальдегида. А.С. 171860, заяв. 24.06.1964, опуб. 22.06.1965 (С07 С47/06).
51. Флид P.M., Тёмкин О.Н., Стрелей М.М. Способ получения ацетальдегида. А.С. 175943, заяв. 26.09.1962, опуб. 26.10.1965 (МПК С07 С47/06).
52. Агладзе Р.И., Гегечкори В.Л. Способ получения уксусного альдегида. А.С. 177870, заяв. 13.05.1963, опуб. 08.01.1966 (МПК С07 С47/06).
53. Петрушова Н.В., Кириллов И.П., Песков Б.П. Способ совместного получения уксусного альдегида и уксусной кислоты. А.С. J b 387963, заяв. N 20.09.1971, опуб. 22.06.1973 (МПК С07 С47/06).
54. Горин Ю.А., Троицкий А.Н;, Макашина А.Н., Горн И.К., Деревягина Н.Л., Мамонтов Б.В. и др. Способ получения уксусного и кратонового альдегидов путём парофазной гидратации ацетилена. А.С. 138607, заяв. 22.08.1960, опуб. 1961 (МПК С07 С47/06).
55. Kirshenbaum I., Amir Е.М., InchaHk J. Oxidation of alcohols. US Patent 3080426, Mar. 5, 1963 (US CI. 568/487).
56. Sanderson J.R., Marquis E.T. Oxidation of primary alcohols to aldehydes using transition metal phthalocynines as catalyst. US Patent 5132465, Jul. 21, 1992 (US CI. 568/485). 70,Нагиев T.M., Зульфугарова C.3., Искендеров P.A. Способ получения ацетальдегида. А.С. 891623, заяв. 09.04.1980, опуб. 23.12.1981 (МПК С07 С47/06). 193
57. Волкова А.Н., Смирнов В.М., Кольцов С И Иванова Л.В., Яковлев В.И. Способ приготовления серебряного катализатора для окисления этилового спирта. А.С. 753459, заяв. 12.04.1978, опуб. 07.08.1980 (МПК С07 С47/07).
58. Hudlicky М. Oxidation in organic chemistry ACS Monograph. 1990, 186, P. 114-126.
59. Kannan S., Sivasanker S. Catalytic behavior of vanadium containing molecular sieves for selective oxidation of ethanol 12- Proc. Int. Zeolite Conference. 1998 (Pub 1999), 2. P. 877 884.
60. Козьминых O.K., Макаревич H.A., Кетов A.H., Костин Л.П., Бурнышёв B.C. Способ получения ацетальдегида. А.С. 352874, заяв. 22.05.1970, опуб. 29.09.1972 (МПК С07 С47/06).
61. Александров Ю.А., Тарунин Б.И., Переплётчиков М.Л, Переплётчикова В.Н., Климова М.Н. Способ получения ацетальдегида. А.С. 891624, заяв. 16.11.1979, опуб. 23.12.1081 (МПК С07 С47/06).
62. Pretzer W.R., Kobylinski T.P, Bozik J.E. Process for the selective preparation of acetaldehyde from methanol and synthesis gas. US Patent 4151208, Apr. 24, 1979 (US CI. 568/487).
63. Pretzer W.R., Kobylinski T.P., Bozik J.E. Process for producing acetaldehyde. US Patent 4239704, Dec. 16, 1980 (US. CI. 568/487).
64. Keim K.-H., Kroff J. A process for the production of acetaldehyde and ethanol. GB 2088870 A, 4 Dec. 1981 (МГЖ C07 C47/06).
65. Pretzer W.R., Kobylinski T.P., Bozik J.E. Process for producing acetaldehyde. US Patent 4239705, Dec. 16, 1980 (US. CI. 568/487).
66. Larkin Jr. Т.Н., Steinmetz G.R. Process for the preparation of acetaldehyde. US Patent 4389532, Jun. 21, 1983 (US CI. 568/487).
67. Rizkalla N. Preparation of acetaldehyde. US Patent 4628121, Dec. 9, 1986 (US CI. 568/487).
68. Wegman R.W., Miller D.S. Synthesis of aldehydes from alcohols. US Patent 4594463, Jun. 10, 1986 (US CI. 568/487).
69. Walker W.E. Process for the selective hydroformylation of methanol to acetaldehyde. US Patent 4337365, Jun. 29, 1982 (US CI. 568/487).
70. Porcelli R.V. Preparation of acetaldehyde. US Patent 4302611, Nov. 24, 1981 (US CI. 568/484).
71. Hajime Y., Yoshikazu S. Method for manufacturing acetaldehyde. JP 256,249 Sep. 19, 2000 (МГЖ C07 C45/54).
72. Isogai N., Hosokawa M., Okawa Т., Wakui N., Watanabe T. Process for producing acetaldehyde. US Patent 4408080, Oct. 4, 1983 (US CI. 568/484).
73. Nakamura S., Tamura M. Process for producing acetaldehyde. US Patent 4351964, Sep. 28, 1982 (US CI. 568/484). 95.Moy D. Process for the preparation of acetaldehyde. US Patent 4356328, Oct. 26, 1982 (US CI. 568/484). 195
74. Tustin G.S., Depew L.S., Collins N.A, Method for producing acetaldehyde from acetic acid. US Patent 6121498, Sep. 19, 2000 (US CI. 568/420).
75. Rachmady W., Vannice M.A. Acetic acid reduction to acetaldehyde over iron catalysts. I. Kinetic behavior Journal of catalysis. 2002, 208, №1. P. 158-169.
76. Rachmady W., Vannice M.A. Acetic acid reduction to acetaldehyde over iron catalysts. II. Characterization by Mossbauer spectroscopy, DRIFTS, TPD and, TPR Journal of catalysis. 2002, 208, №1. P. 170-179.
77. Fenton D.M. Conversion of chloroformates to an aldehyde. US Patent 3720718, Mar. 13, 1973 (US CI. 5.68/484).
78. Roscher G., Schmit K., Schmit Т., Schmit H. Process for the manufacture of acetaldehyde from vinil acetate. US Patent 3647882, Mar. 7, 1972 (US CI. 568/484).
79. Шостаковский М.Ф., Азербаев И.Н., Якубов P.Д., Атавин А.С., Петров Л.П., Швецов Н.В. и др. Способ получения ацетальдегида. А.С. 222363, заяв. 27.12.1965, опуб. 22.07.1962 (МПК С07 С47/06).
80. Parker Р.Т. Preparation of aldehydes by steam oxidation of ethers. US Patent 2477312, Jul. 26, 1949 (US CI. 568/485).
81. Fenton D.M. Decomposition of carbonates to form aldehydes. US Patent 3721714, Mar. 20, 1973 (US CI. 568/449).
82. Neely S.D. Conversion of ethyl alcohol to acetaldehyde. US Patent 3106581, Oct. 8,1963 (US CI. 568/471). 105. MacLean A.F. Process for catalytic dehydrogenation of alcohols to carbonyl compounds. US Patent 2634295, Apr. 7, 1953 (US CI. 568/406).
83. Marcinkowsky A.E., Henry J.P. Catalytic dehydrogenation of ethanol for the production of acetaldehyde and acetic acid. US Patent 4220803, Sep. 2, 1980 (US CI. 562/538).
84. Аллахвердова H.X. Газофазные превращения этанола в кислородсодержащие продукты на сложных оксидных катализаторах. Автореферат Дис. доктора химических наук. Баку, 1993. 196
85. Backhaus А.А., Arentz F.B. Process of making aldehydes. US Patent 1388841, Aug. 30, 1921 (US CI. 568/487).
86. Williams C.S. Process for making acetic aldehyde. US Patent 1555539, Sep. 29, 1925 (US CI. 568/487).
87. Raich B.A., Foley Henry С Ethanol dehydrogenation with a palladium membrane reactor: a alternative to Wacker chemistry Ind. Eng. Chem. Res. 1998, 3 7 P 3888-3895.
88. Matsumura Y., Hashimoto K., Yoshida S. Selective dehydrogenation of ethanol over highly dehydrated silica Journal of catalysis. 1989, 117. P. 135-143.
89. Carrasco-Marin F., Mueden A., Moreno-Castilla С Surface-treated activated carbons as catalysts for the dehydration and dehydrogenation reactions of ethanol Journal of physical chemistry B. 1998, 102. P. 9239-9244. 114. Bo-Quing X., Tian-Xi C, Song L. Selective dehydrogenation of ethanol to acetaldehyde over Na ZSM-5 calcined at high temperature Reaction kinetics and catalysis letters. 1993, 49, №1. P. 223-228.
90. Iwasa N., Takezawa N. Reforming of ethanol dehydrogenation to ethyl acetate and steam reforming to acetic acid over copper-based catalysts Bulletin of the chemical society of Japan. 1991, 64. P. 2619-2623.
91. Chen D.A., Freind C M Selective and nonselective dehydrogenation in primary alcohols: reactions of ethanol and 1-propanol on Co-covered Mo (110) Langmuir.-1998, 14.-P. 1451-1457.
92. Idriss H., Seebauer E.G. Reactions of ethanol over metal oxides Journal of molecular catalysis A. 2000, 152. P. 201-212. 118. Kim K.S., Barteau M.A., Farneth W.E. Adsoфtion and decomposition of aliphatic alcohols on Ti02 Langmuir. 1988,4, №3. P. 533-543. 197
93. Cong Y., Masel R.I., van Spaendonk V. Low temperature C-C bond scission during ethanol decomposition on on Pt (331) Surface science. 1997, 385, №2-3.-P. 246-258.
94. Inui K., Kurabayashi Т., Sato S. Direct synthesis of ethyl acetate carried out under pressure Journal of catalysis. 2002, 212. P. 207-215.
95. Iwasa N., Yamamoto O., Tamura R., Nishikybo M., Takezawa N. Difference in reactivity of acetaldehyde intermediates in the dehydrogenation of ethanol over supported Pd catalysts Catalysis letters. 1999, 62. P. 179-184.
96. Matsumura Y., Hashimoto K., Yoshida S. Selective dehydrogenation of ethanol to acetaldehyde over silicalite-1 Journal of catalysis. 1990, 122. P. 352-361.
97. Chung M-J., Moon D-J., Kim H-S., Park K-Y., Ihm S-K. Higher oxygenate formation from ethanol on Cu/ZnO catalysts: Synergism and reaction mechanism Journal of molecular catalysis A. 1996, 113. P. 507-515.
98. Sexton B.A. Surface vibrations of adsorbed intermediates in the reactions of alcohols with Cu(lOO) Surface science. 1979, 82. P. 299-318.
99. Elliot D.J., Penella F. The formation of ketones in the presence of carbon monoxide over CuO/ZnO/AbOa// Journal of catalysis. 1989, 119, №2. P. 359ПТЗбШелдон P.A. Химические продукты на основе синтез-газа. Пер. с англ. под ред. Локтева СМ. М.: Химия, 1987. 248 с.
100. Matsumura Y., Hashimoto К., Watanabe S., Yoshida S. Dehydrogenation of ethanol over ZSM-5 type zeolites Chemistry letters. 1981, №1. P. 121-122. 129. J.M., Joshi H.K. Acetaldehyde by dehydrogenation of ethyl alcohol Industrial and engineering chemistry. -1951, August. P 1805-1811.
101. Process for the dehydrogenation of alcohols. GB 825602, 16.12.1959 (МПК C07 C45/00D). 198
102. Young CO. Process for making acetaldehyde and a catalyst therefor. US Patent 1977750, Oct. 23, 1934 (US CI. 568/487).
103. Борисов A.M., Лапшов А.И., Малютин Н.Р, Карасёв В.Н., Гайворонский В.И., Никитин Ю.С., Башилов Л.С. Способ получения ацетальдегида. А.С. 618368, заяв. 01.07.1974, опуб. 05.08.1978 (МПК С07 С47/06). 134. Ти Y-J., Chen Y-W. Effects of alkaline-earth oxide additives on silicasupported copper catalysts in ethanol dehydrogenation Ind. Eng. Chem. Res. 1998, 3 7 P 2618-2622.
104. Kanuon N., Astier M.P., Pajonk G.M. Selective dehydrogenation of ethanol over Cu catalysts containing Zr or V and Zr React. Kinet. Catal. Lett. 1991, 44, 1 P 51-56.
105. Kawamoto K., Nashimura Y. The catalytic reaction of alcohols with reduced copper Bulletin of the chemical society of Japan. 1971, 44. P. 819-825.
106. Komarewski V.I. Dehydrogenation of alcohols. US Patent 2884460, Apr. 28, 1959 (US CI. 568/485).
107. Султанов А.С, Махкамов X.M., Сапожникова Э.А., Янова А.Е., Лапинов А.И., Борисов A.M. Способ получения ацетальдегида. А.С. 433782, заяв. 24.02.1971, опуб. 25.02.1976 (МПК С07 С47/06).
108. Тещенко А.Д., Курсевич О.В., Клевченя Д.И., Андреевский Д.Н., Сачек А.И., Басиев И.М, Андреев В.А. Катализатор для дегидрирования этанола. А.С №1109189, заяв. 22.02.1981, опуб. 23.08.1984. (МПК С07 С47/06).
109. Duncanson L.A., Charman Н.В., Coffey R.S. Dehydrogenation of alcohols. GB 1061045, 08.03.1967 (МПК C07 C45/00D).
110. Сеттерфилд Ч. Практический курс гетерогенного катализа: Пер. с англ. М.:Мир, 1984.-520 с,
111. Савельев А.П., Дымент О.Н., Борисов A.M., Кантор А.Я., Калужский А.А., Олейникова Н.С Способ приготовления катализатора для дегидриро- 199
112. Арешидзе Х.И., Чивадзе Г.О., Иосилиани Д.К. Способ получения альдегидов и кетонов. А.С. №400570, заяв. 12.07.1971, опуб. 01.10.1973 (МПК С07 С47/06). 144. Верёвкин П.Ф., Малютин Н.Р., Смирнов А.И. Способ получения ацетальдегида. А.С. №191519, заяв. 17.12.1965, опуб. 26.01.1967 (МПК С07 С47/06).
113. Deng J., Cao Y., Liu В. Catalytic dehydrogenation of ethanol in Pd-M/y-AOs composite membrane reactors Applied Catalysis. 1997, 154, №1-2. P. 129138.
114. Schmitt J.L., Walker P.L., Castellion G.A. Carbon particulates with controlled density. US Patent 4029600, Jun. 14, 1977 (US CI. 502/418).
115. Yermakov Yu.L, Surovikin V.F., Plaksin G.V., Semikolenov V.A., Likholobov V.A., Chuvalin L.V., Bogdanov S.V. New carbon material as support for catalysts Reaction kinetics and catalysis letters. 1987, 33, №2. P. 435-440.
116. Surovikin V.F., Plaxin G.V., Semikolenov V.A., Likholobov V.A., Tiunova I.J. Porous carbonaceous material. US Patent 4978649, Dec. 18, 1990 (US CI. 502/416).
117. Суровикин В.Ф, Фенелонов В.Б., Плаксин Г.В., Семиколенов B.A., Оккель Л.Г. Закономерности формирования пористой структуры композитов на основе пиролитического и технического углерода Химия твёрдого топлива. 1995, №3. 62-68.
118. Гаврилов В.Ю., Фенелонов В.Б., Чувилин А.Л., Плаксин Г.В., Суровикин В.Ф.. Ермаков Ю.И., Семиколенов В.А. Изучение морфологии и пористой структуры композиционных углерод-углеродных материалов Химия твёрдого топлива. 1990, №2. 125-129.
119. Плаксин Г.В, Суровикин В.Ф., Фенелонов В.Б., Семиколенов В.А., Оккель Л.Г. Формирование текстуры нового углеродного носителя для катализаторов Кинетика и катализ. 1993,34, №6. 1079-1083. 200
120. Фенелонов В.Б. Введение
121. Семиколенов В.А. Конструирование высокодисперсных палладиевых катализаторов на углеродных носителях Журнал прикладной химии. 1997, 70,№5.-С. 785-796.
122. Старцев А.Н., Шкуропат А., Зайковский В.И., Мороз Э.М., Ермаков Ю.И., Плаксин Г.В., Цеханович М.С, Суровкин В.Ф. Структура и каталитические свойства сульфидных катализаторов гидрообессеривания на углеродном носителе Кинетика и катализ. 1988, т. 29, вып. 2. 398-405.
123. Корольков В.В., Доронин В.П., Старцев А.Н., Климов О.В., Туреханова Р.Н., Дуплякин В.К. Гидродеметаллизация ванадилпорфиринов на сульфидных Мо и Ni-Mo катализаторах нанесённых на «Сибунит» Кинетика и катализ. 1994,35, №1. 96-99.
124. Ряшенцева М.А., Аваев В.И. Гидрирование этилацетата на нанесённых рениевых катализаторах Известия Академии наук. Серия химическая. 1999, №5.-С. 1006-1008.
125. Ряшенцева М.А. Свойства нанесённых рениевых катализаторов в дегидрировании циклогексана Известия Академии наук. Серия химическая. 1996, №8.-С. 2119-2121.
126. Ряшенцева М.А. Селективное дегидрирование изопропилового спирта на низкомолекулярных нанесённых биметаллических ренийсодержащих катализаторах Известия Академии наук. Серия химическая. 1998, №11. 2381-2383. 201
127. Земсков СВ., Горностаев Л.Л., Митькин В.Н., Ермаков Ю.И., Лисицын А.С., Лихолобов В.А., Кедринский И.А., Погодаев В.П., Плаксин Г.В., Суровикин В.Ф. Фтористый углерод и способ его получения. Патент РФ №2054375, заявл. 15.05.1987, опубл. 20.02.1996 (МПК С01 В31/00).
128. Коваленко Г.А., Семиколенов В.А.. Кузнецова Е.В., Плаксин Г.В., Рудина Н.А. Углеродные материалы как адсорбенты для биологически активных веществ и бактериальных клеток Коллоидный журнал. 1999, 61, №6. 787-795.
129. Якерсон В.И., Голосман Е.З. Катализаторы и цементы. М.: Химия, 1992. -256 с.
130. Ниссенбаум В.Д. Формирование, поверхностные и каталитические свойства контактов на основе алюминатов кальция: Дис....канд. хим. наук. Москва, 1989.
131. Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis Carbon. 1998, 36, №3. P. 159-175. 166. P.A. Лидии, B.A. Молочко, Л.Л. Андреева Химические свойства неорганических соединений Под ред. Р.А. Лидина. М.: Химия, 1996. 480 с.
132. Анализ поверхности методами оже- и рентгеновской фотоэлектронной спектроскопии: пер. с англ. под ред. Д. Бриггса и М.П. Сиха. М.: Мир, 1987.-600 с. 202

Этанол представляет собой вещество с характерным запахом и вкусом. Впервые он был получен в результате реакции брожения. Для последней использовались различные продукты: злаковые, овощи, ягоды. Затем люди освоили процессы дистилляции и способы получения более концентрированного спиртового раствора. Этанол (как и его аналоги) получил широкое распространение благодаря комплексу своих свойств. Чтобы избежать опасного воздействия на организм, следует знать особенности вещества и специфику его применения.

Этанол (второе название - винный спирт) является одноатомным спиртом, то есть содержит всего один атом. Латинское название - Aethanolum. Формула - C2H5OH. Этот спирт применяется в различных отраслях: промышленности, косметологии, стоматологии, фармоцевтике.

Этанол стал основой для производства различных алкогольных напитков. Это стало возможным за счет способности его молекулы к угнетению центральной нервной системы. Согласно нормативным документам этиловый ректификованный спирт имеет ГОСТ 5962-2013. Его следует отличать от технического варианта жидкости, который используется преимущественно в промышленных целях. Производство и хранение алкогольной продукции осуществляется под контролем государственных органов.

Польза и вред вещества

Этиловый спирт при употреблении в строго ограниченных дозировках полезен для организма. Приобрести его в аптеке можно только по рецепту врача. Цена колеблется в зависимости от объема емкости. Польза этанола проявляется в:

  • нормализации функционирования пищеварительного тракта;
  • профилактике заболеваний миокарда;
  • нормализации кровообращения;
  • разжижении крови;
  • уменьшении болевого синдрома.

В результате регулярного употребления вещества в организме наблюдается кислородное голодание. Из-за быстрой гибели клеток головного мозга наступает ухудшение памяти, снижается чувствительность к боли. Отрицательное воздействие на внутренние органы проявляется в развитии различных сопутствующих заболеваний. Чрезмерное употребление алкоголя опасно сильным отравлением и наступлением комы.
Алкоголизм характеризуется развитием как физической, так и психической зависимости. При отсутствии лечения и прекращения употребления спиртосодержащих веществ происходит личностная деградация, нарушаются полноценные социальные связи.

Свойства

Этанол представляет собой естественный метаболит. Это заключается в его способности синтезироваться в организме человека.

Группу свойств винного спирта можно разделить на три категории:

  1. физические;
  2. химические;
  3. пожароопасные.

Формула этанола

Первая категория включает описание внешнего вида и другие параметры физического характера. В нормальных условиях этанол летуч, отличается от других веществ своеобразным ароматом и жгучим вкусом. Вес одного литра жидкости составляет 790 грамм.

Он хорошо растворяет различные органические вещества. Температура закипания составляет 78,39 °C. Плотность этанола (в результате измерения ареометром) меньше, чем у воды, поэтому он ее легче.

Этиловый спирт является горючим, способен быстро воспламеняться. При горении пламя отличается синим цветом. Благодаря данному химическому свойству этанол можно легко отличить от метилового спирта, являющегося ядом для человека. Последний при возгорании имеет зеленое пламя.

Для того, чтобы в домашних условиях определить водку, сделанную на метаноле, необходимо нагреть медную проволоку и опустить ее в водку (достаточно одной ложки). Аромат прелых яблок является признаком этилового спирта, запах формальдегида указывает на наличие метанола.

Этанол является пожароопасным веществом, так как его температура воспламенения составляет всего 18°С. Поэтому, контактируя с веществом, следует избегать его нагревания.

При злоупотреблении этанолом, он оказывает на организм вредное воздействие. Это связано с теми механизмами, которые запускает прием любого алкоголя. Смесь воды и спирта провоцирует выделение гормона эндорфина.

Это способствует седативно-гипнотическому эффекту, то есть подавлению сознания. Последнее выражается в преобладании процессов торможения, что проявляется такими симптомами как сниженная реакция, заторможенность движений и речи. Передозировка этанолом характеризуется в начале возникновением возбуждения, которое затем сменяют процессы торможения.

Краткая история

Этанол нашел применение еще в эпоху неолита. Доказательством этого являются следы алкогольных напитков, найденные в Китае на керамике, возраст которой составляет около 9000 лет. Впервые этанол был получен в XII веке в Салерно. Он представлял собой смесь воды и спирта.

Чистый продукт был получен в 1796 году Иоганном Тобиасом Ловиц. Ученый использовал для фильтрации активированный уголь. На протяжении долгих лет подобный способ получения спирта был единственным.
Впоследствии формула этанола была вычислена Николо-Теодором де Соссюром. Описание веществу как углеродному соединению дал Антуан Лавуазье. XIX-XX века характеризуются как период тщательного изучения этанола, когда подробно были описаны его свойства. Благодаря последним он получил широкое применение в различных отраслях человеческой жизни.

В чем опасность этанола?

Этанол относится к тем вещества, незнание свойств которого может привести к негативным последствиям. Поэтому перед его использованием следует ознакомиться с тем, в чем заключается опасность винного спирта.

Можно ли пить?

Употребление спирта в составе алкогольных напитков допустимо при одном условии: пить редко и в небольшой дозе. При злоупотреблении происходит развитие физической и психической зависимости, то есть алкоголизма.

Бесконтрольное применение спиртосодержащих напитков (когда концентрация этанола составляет 12 грамм на 1 килограмм массы тела) вызывает сильную интоксикацию организма, которая при отсутствии своевременной медицинской помощи может стать причиной летального исхода.

Пить этанол в чистом виде нельзя.

Какие заболевания вызывает?

При употреблении этанола большую опасность представляют продукты его распада в организме. Одним из них является ацетальдегид, который принадлежит к токсичным и мутагенным веществам. Канцерогенные свойства становятся причиной развития онкологических патологий.

Неумеренное потребление этилового спирта опасно:

  • ухудшением памяти;
  • гибелью клеток головного мозга;
  • нарушением функционирования пищеварительного тракта (гастрит, язва 12-типерстного кишечника);
  • развитием заболеваний печени (цирроз), почек;
  • нарушением функционирования миокарда и сосудов (инсульт, инфаркт);
  • личностной деградацией;
  • необратимыми процессами в центральной нервной системе.

Применение

Большой спектр характеристик этанола обеспечил его использование в различных направлениях. Наиболее популярны из них следующие:

  1. В качестве топлива для автомобилей. Использование этилового спирта как моторного топлива связано с именем Генри Форда. Им в 1880 году был создан первый автомобиль, который работал на этаноле. После этого вещество стали использовать для работы ракетных двигателей, различных нагревательных приборов.
  2. Химическая промышленность. Этанол используют для получения других веществ, например, этилена. Являясь отличным растворителем, этиловый спирт используют в производстве лака, красок, бытовой химии.
  3. Фармакологическая отрасль. В данной сфере этанол используют по-разному. Обеззараживающие свойства медицинского спирта позволяют его применять для обработки операционного поля, рук хирурга. Его используют для уменьшения проявлений лихорадки, в качестве основы для компрессов, настоек. Этанол относится к противоядиям, которые помогают при отравлении метанолом и этиленгликолем. Он нашел применение в качестве пеногасителя при подаче кислорода или искусственной вентиляции легких.
  4. Косметическая промышленность. Производители косметики и парфюмерии включают этанол в состав различных одеколонов, туалетной воды, аэрозолей, шампуней и других средств ухода за кожей и телом.
  5. Пищевая промышленность. Этиловый спирт используется в качестве главного компонента алкогольных напитков. Он содержится в продуктах, которые были получены с помощью процессов брожения. Его используют как растворитель различных ароматизаторов и консервант при производстве хлеба, булочек, кондитерских изделий. Этиловый спирт является пищевой добавкой E1510.
  6. Другие направления. Винный спирт используют для при работе с препаратами биологической природы.

Взаимодействие с другими веществами

Согласно инструкции по применению, этанол при одновременном использовании может усиливать действие лекарств, угнетающих центральную нервную систему, процессы кровообращения, центр дыхания.
Взаимодействие с некоторыми веществами указано в таблице.

Этанол в зависимости от его применения может быть как полезен, так и вреден. При регулярном употреблении алкоголя, содержащего этиловый спирт, происходит формирование зависимости. Поэтому использование крепких напитков в качестве антидепрессантов не должно превращаться в привычку.

Этанол - что это за вещество? Каково его применение и как оно производится? Этанол более известен всем под иным названием - спирт. Конечно, это не совсем правильное обозначение. Но между тем, именно под словом «спирт» мы и подразумеваем «этанол». Еще наши предки знали о его существовании. Они получали его путем процесса брожения. В ход шли различные продукты от злаков до ягод. Но в полученной браге, именно так называли в старину спиртные напитки, количество этанола не превышало 15 процентов. Чистый спирт смогли выделить только после того, как изучили процессы дистилляции.

Этанол - что это?

Этанол - это одноатомный спирт. При нормальных условиях он представляет собой летучую, бесцветную, легковоспламеняющуюся жидкость, обладающую специфическим запахом и вкусом. Этанол нашел широкое применение в промышленности, медицине и быту. Он является прекрасным дезинфицирующим средством. Спирт используется как топливо и в качестве растворителя. Но больше всего формула этанола С2Н5ОН известна любителям алкогольных напитков. Именно в этой сфере это вещество нашло широкое применение. Но не стоит забывать и о том, что спирт как действующий компонент алкогольных напитков является сильным депрессантом. Это психоактивное вещество способно угнетать центральную нервную систему и вызывать сильную зависимость.

В наше время сложно найти отрасль промышленности, где не использовался бы этанол. Трудно перечислить все, чем так полезен спирт. Но более всего его свойства оценили в фармацевтике. Этанол - главный компонент практически всех лекарственных настоек. Многие «бабушкины рецепты» для лечения людских недугов основываются на этом веществе. Оно вытягивает из растений все полезные вещества, накапливая их. Это свойство спирта нашло применение и при изготовлении домашних травяных и ягодных настоек. И хотя это и алкогольные напитки, но в умеренных количествах они приносят пользу здоровью.

Польза этанола

Формула этанола известна всем еще со школьных уроков по химии. Но вот в чем польза этого химического вещества, так сразу ответит не каждый. В действительности сложно представить отрасль промышленности, где не использовался бы спирт. Прежде всего, этанол применяют в медицине как мощнейшее дезинфицирующее средство. Им обрабатывают операционную поверхность и раны. Спирт губительно действует практически на все группы микроорганизмов. Но применяется этанол не только в хирургии. Он незаменим для изготовления лекарственных экстрактов и настоек.

В малых дозах спирт полезен для организма человека. Он способствует разжижению крови, улучшению кровообращения и расширению сосудов. Он даже применяется для профилактики сердечно-сосудистых заболеваний. Этанол способствует налаживанию работы желудочно-кишечного тракта. Но только в действительно малых дозах.

В особых случаях психотропное действие спирта может заглушить самые сильные боли. Этанол нашел применение и в косметологии. Благодаря своим ярко выраженным антисептическим свойствам он включен в состав практически всех очищающих лосьонов для проблемной и жирной кожи.

Вред этанола

Этанол - спирт, получаемый путем брожения. При чрезмерном употреблении он способен вызывать сильнейшие токсикологические отравления и даже кому. Это вещество входит в состав алкогольных напитков. Спирт вызывает сильнейшую психологическую и физическую зависимость. Алкоголизм принято считать болезнью. Вред этанола сразу ассоциируют со сценами безудержного пьянства. Неумеренное употребление напитков, содержащих спирт, приводит не только к пищевым отравлениям. Все гораздо сложнее. При частом распитии алкоголя поражаются практически все системы органов. От кислородного голодания, которое вызывает этанол, погибают в большом количестве клетки головного мозга. Происходит На первых стадиях ослабевает память. Затем у человека развиваются заболевания почек, печени, кишечника, желудка, сосудов и сердца. У мужчин наблюдается потеря потенции. На последних стадиях у алкоголика выявляется деформация психики.

История спирта

Этанол - что это за вещество и как его получили? Далеко не все знают, что его использовали еще с доисторических времен. Он входил в состав алкогольных напитков. Правда, концентрация его была небольшой. Но между тем, следы алкоголя были найдены в Китае на 9000-летней керамике. Это однозначно говорит о том, что люди еще в эпоху неолита выпивали содержащие алкоголь напитки.

Первый случай был зарегистрирован в 12 веке в Салерно. Правда, это была водно-спиртовая смесь. Чистый же этанол выделил Иоганн Тобиас Ловиц в 1796 году. Он использовал метод фильтрации через активированный уголь. Получение этанола этим способом долго оставалось единственным методом. Формулу спирта вычислил Николо-Теодор де Соссюра, а описал его как углеродное соединение Антуан Лавуазье. В 19-20 веках многие ученые занимались изучением этанола. Были изучены все его свойства. В настоящее время он получил широкое распространение и применяется практически во всех сферах человеческой деятельности.

Получение этанола путем спиртового брожения

Пожалуй, самый известный способ получения этанола - это спиртовое брожение. Оно возможно только при использовании органических продуктов, которые содержат большое количество углеводов, например винограда, яблок, ягод. Еще один важный компонент, чтобы брожение протекало активно - это наличие дрожжей, ферментов и бактерий. Так же выглядит переработка картофеля, кукурузы, риса. Для получения топливного спирта используют сахар-сырец, который вырабатывают из тростника. Реакция довольно сложна. В результате брожения получается раствор, который содержит не более 16% этанола. Более высокую концентрацию получить не удается. Это объясняется тем, что в более насыщенных растворах дрожжи выжить не способны. Таким образом, полученный этанол необходимо подвергнуть процессам очистки и концентрирования. Обычно используют процессы дистилляции.

Чтобы получить этанол, используют вид дрожжей Saccharomyces cerevisiae различных штаммов. В принципе, все они способны активизировать данный процесс. В качестве питательного субстрата можно применять древесные опилки или как альтернативу - раствор, полученный из них.

Топливо

Многие знают о свойствах, которыми обладает этанол. Что это алкоголь или дезинфицирующее вещество, тоже широко известно. Но спирт еще является и топливом. Его используют в ракетных двигателях. Известный факт - во время Первой мировой войны 70% водный этанол применяли как топливо для первой в мире немецкой баллистической ракеты - «Фау-2».

В настоящее время спирт получил большее распространение. В качестве топлива он применяется в двигателях внутреннего сгорания, для нагревательных приборов. В лабораториях его заливают в спиртовки. Каталитическое окисление этанола используют для производства грелок, как военных, так и туристических. Спирт с ограничением применяют в смеси с жидким нефтяным топливом в силу его гигроскопичности.

Этанол в химической промышленности

Широко применение этанола в химической промышленности. Он служит сырьем для производства таких веществ, как диэтиловый эфир, уксусная кислота, хлороформ, этилен, ацетальдегид, тетраэтилсвинец, этилацетат. В лакокрасочной промышленности этанол широко используют как растворитель. Спирт является основным компонентом стеклоомывателей и антифризов. Применяется спирт и в бытовой химии. Он входит в состав моющих и чистящих средств. Особенно часто он встречается в качестве компонента в жидкостях для ухода за сантехникой и стеклом.

Этиловый спирт в медицине

Этиловый спирт можно отнести к антисептикам. Он губительно воздействует практически на все группы микроорганизмов. Он разрушает клетки бактерий и микроскопических грибов. Применение этанола в медицине носит практически повсеместный характер. Это прекрасное подсушивающее и обеззараживающее средство. Благодаря дубящим свойствам спирт (96%) используют для обработки операционных столов и рук хирурга.

Этанол - растворитель лекарственных препаратов. Он широко применяется для изготовления настоек и экстрактов из лекарственных трав и прочего растительного сырья. Минимальная концентрация спирта в подобных веществах не превышает 18 процентов. Часто этанол используют в качестве консерванта.

Этиловый спирт прекрасно применяется и для растираний. Во время лихорадки он производит охлаждающий эффект. Очень часто спирт используют для согревающих компрессов. При этом он абсолютно безопасен, на коже не остается покраснений и ожогов. Кроме того, этанол применяется как пеногаситель при подаче искусственным путем кислорода во время вентиляции легких. Также спирт является компонентом общей анестезии, которую могут применять в случае дефицита медикаментов.

Как ни странно, но этанол медицинский используется в качестве противоядия при отравлении токсичными спиртами, например метанолом или этиленгликолем. Обусловлено его действие тем, что при наличии нескольких субстратов фермент алкогольдегидрогеназа осуществляет только конкурентное окисление. Именно благодаря этому после незамедлительного приема этанола вслед за токсичным метанолом или этиленгликолем наблюдается уменьшение текущей концентрации отравляющих организм метаболитов. Для метанола это муравьиная кислота и формальдегид, а для этиленгликоля - щавелевая кислота.

Пищевая промышленность

Итак, как получить этанол, было известно еще нашим предкам. Но наиболее широкое применение он получил только в 19-20 веках. Наряду с водой, этанол является основой практически всех спиртных напитков, в первую очередь водки, джина, рома, коньяка, виски, пива. В небольших количествах спирт обнаруживается и в напитках, которые получают путем брожения, например в кефире, кумысе, квасе. Но к алкоголю их не причисляют, так как концентрация спирта в них очень мала. Так, содержание в свежем кефире этанола не превышает 0,12%. Но если он отстоится, то концентрация может повыситься до 1%. В квасе этилового спирта чуть более (до 1,2%). Больше всего алкоголя содержится в кумысе. В свежем молочном продукте его концентрация - от 1 до 3%, а в отстоявшемся доходит до 4,5%.

Этиловый спирт - хороший растворитель. Это свойство позволяет использовать его в пищевой промышленности. Этанол является растворителем для ароматизаторов. Кроме того, он может использоваться в качестве консерванта для хлебобулочных изделий. Он зарегистрирован как пищевая добавка Е1510. Этанол имеет энергетическую ценность 7,1 ккал/гр.

Действие этанола на организм человека

Во всем мире налажено производство этанола. Это ценное вещество используется во многих сферах жизни человека. являются лекарством. Пропитанные этим веществом салфетки используют как дезинфицирующее средство. Но вот какое влияние этанол оказывает на наш организм при попадании внутрь? Полезен ли он или вреден? Эти вопросы требуют детального изучения. Всем известно, что человечество потребляло алкогольные напитки веками. Но только в прошлом столетии проблема алкоголизма приобрела масштабные размеры. Наши предки употребляли брагу, медовуху и даже ныне столь популярное пиво, но все эти напитки содержали слабый процент этанола. Поэтому нанести существенный вред здоровью они не могли. Но после того как Дмитрий Иванович Менделеев разбавил спирт с водой в определенных пропорциях, все изменилось.

В настоящее время алкоголизм - это проблема практически всех стран мира. Попадая в организм, спирт оказывает патологическое воздействие практически на все органы без исключения. В зависимости от концентрации, дозы, пути попадания и длительности воздействия этанол может проявить токсическое и наркотическое действие. Он способен нарушать работу сердечно-сосудистой системы, способствует возникновению заболеваний пищеварительного тракта, в том числе и язвы желудка и 12-типерстной кишки. Под наркотическим действием подразумевается способность спирта вызывать ступор, нечувствительность к болевым ощущениям и угнетение функций центральной нервной системы. Кроме того, у человека возникает алкогольное возбуждение, очень быстро он становится зависимым. В отдельных случаях чрезмерное употребление этанола может вызвать кому.

Что же происходит в нашем организме, когда мы пьем алкогольные напитки? Молекула этанола способна поражать ЦНС. Под действием спирта происходит выделение гормона эндорфина в прилежащем ядре, а у людей с явно выраженным алкоголизмом и в орбитофронтальной коре. Но, тем не менее, несмотря на это, этанол не признан наркотическим веществом, хотя он и проявляет все соответствующие действия. Этиловый спирт не был внесен в международный список контролируемых веществ. И это спорный вопрос, потому как в определенных дозах, а именно 12 грамм вещества на 1 килограмм массы тела, этанол приводит сначала к острому отравлению, а затем и смерти.

Какие заболевания вызывает этанол?

Сам раствор этанола не является канцерогеном. Но вот его основной метаболит - ацетальдегид - токсичное и мутагенное вещество. Помимо этого, он еще и обладает канцерогенными свойствами и провоцирует развитие онкологических заболеваний. Его качества исследовались в лабораторных условиях на подопытных животных. Эти научные работы привели к весьма интересным, но в то же время настораживающим результатам. Оказывается, ацетальдегид - не просто канцероген, он способен повреждать ДНК.

Длительное употребление алкогольных напитков может вызывать у человека такие заболевания, как гастрит, цирроз печени, язва 12-типерстной кишки, рак желудка, пищевода, тонкой и прямой кишки, сердечно-сосудистые заболевания. Регулярное попадание этанола в организм может спровоцировать оксидативное повреждение нейронов мозга. Вследствие повреждения они погибают. Злоупотребление напитками, содержащими спирт, приводит к алкоголизму и клинической смерти. У людей, регулярно распивающих алкоголь, риск развития инфаркта и инсульта повышается в разы.

Но это еще не все свойства этанола. Это вещество является естественным метаболитом. В малых количествах оно может синтезироваться в тканях человеческого организма. Его называют истинным Также оно продуцируется в результате расщепления углеводной пищи в желудочно-кишечном тракте. Такой этанол называют «условно эндогенным алкоголем». Может ли обычный алкотестер определить спирт, который синтезировался в организме? Теоретически это возможно. Его количество редко превышает 0,18 промилле. Это значение находится на нижней границе самых современных измерительных приборов.

Компоненты коньячного спирта делятся на вещества, переходящие при перегонке из виноматериалов, и на вещества, образованные при выдержке в дубовых бочках. Последняя система классификации этих компонентов рассматривает вещества, перешедшие при перегонке виноматериалов вместе с летучими веществами, а вещества, образованные при выдержке – с нелетучими.

Летучие вещества.

Главным компонентом коньячного спирта является этиловый спирт и вода. Остальные вещества следует рассматривать как примеси к этим двум основным компонентам. Высококачественный коньячный спирт в своем составе должен иметь определенный минимум летучих примесей (в противном случае такой коньячный спирт считается ректифицированным). Следует отметить, что чрезмерно большое количество летучих примесей ухудшает качество коньячного спирта.

В коньячных спиртах, кроме этилового спирта, найдено некоторое количество других алифатических спиртов: метанол, пропиловый, бутиловый, изобутиловый, амиловый, изоамиловый и другие спирты.

Метиловый спирт (СН4ОН) характеризуется следующими показателями: молекулярная масса 32,04; плотность ρ=0,7913; температура плавления 97,7 оС, температура кипения 64,7 оС.

Метиловый спирт (метанол) - это бесцветная жидкость, в чистом виде ее запах напоминает этанол, смешивается с водой в любых соотношениях, хорошо растворяется во многих органических растворителях. Метанол – это отравляющая жидкость, вдыхание его паров также вредно, как и прием внутрь. В пищевых продуктах и напитках допускается не более 0,1 % об.

В грузинских и молдавских коньячных спиртах метанола содержится от следов до 0,08 %. В коньячных спиртах из красных виноматериалов количество метилового спирта заметно выше (в два раза и больше), чем в белых. Коньячные спирты, полученные по кахетинской технологии (выдержка на гребнях), содержит метанола 296...336 мг/дм3, что два раза выше, чем из виноматериалов, полученных по европейской технологии (136...288 мг/дм3).

Коэффициент ректификации метанола меньше единицы, поэтому при перегонке коньячных виноматериалов он переходит в хвостовую фракцию. В процессе окисления перманганатом калия метиловый спирт переходит в муравьиный альдегид, дающий с фуксинсернистой кислотой (лучше хромотроповая кислота) стойкий фиолетовый цвет. Такая реакция может быть использована при качественном определении метанола в спиртовых напитках.

Этиловый спирт (этанол, С2Н5ОН) имеет молекулярную массу 46,07, плотность ρ=0,789, температуру кипения 78,35 оС и температуру плавления 114,5 оС. Это главный продукт спиртового брожения сахаров с характерным слабым запахом, бесцветная жидкость. С водой смешивается в любых соотношениях. При содержании 95,57 % мас. спирт кипит и перегоняется при постоянной температуре 78,15 оС.

Из химических свойств этилового спирта необходимо отметить следующие реакции: он легко замещает водород в гидроксильной группе на металл, легко образует алкоголят натрия и алкоголят алюминия, с кислотами образует сложные эфиры, а с альдегидами – полуацетали и ацетали. Окисление этанола в ацетальдегид происходит под действием растворимого в спирте кислорода. Этиловый спирт легко окисляется двуххромовокислым калием, перманганатом и другими окислителями, используемыми при количественном определении спирта. Растворимость кислорода в спирте в несколько раз выше, чем в воде (в связи с образованием эмульсии). Этиловый спирт в парообразном состоянии с воздухом образует горючие взрывные смеси. Так при концентрации паров спирта в воздухе, равной 3,28 %, смесь взрывается. Кроме того, пары спирта при постоянном вдыхании вредны для организма человека. Запах этилового спирта при концентрации 0,25 мг/дм3 легко ощущается в воздухе.

Высшие спирты.

В виноделии и коньячном производстве высшие спирты рассматривают как сумму алифатических спиртов с содержанием углеродных атомов больше трех. Это пропиловый, бутиловый, амиловый, гексиловый, гептиловый, октиловый, нониловый и другие спирты, и их изомеры. В винах и коньяках их, в основном, определяют суммарно. Применяя современные приборы и хроматографию, их начали разделять на отдельные компоненты.

Пропиловый спирт (С3Н6ОН) имеет молекулярную массу 60,09, плотность ρ=0,8036, температуру плавления 126,1 оС, температуру кипения 97,2 оС. Он легко смешивается с водой, этиловым спиртом, бензолом и эфиром.

Бутиловый спирт (С4Н9ОН) имеет молекулярную массу 74,0, плотность ρ=0,80978, температуру кипения 117,4 оС. В холодной воде растворяется до 9 % при 15 оС.

Изобутиловый спирт (С4Н11ОН) имеет молекулярную массу 74,0, плотность ρ=0,802, температуру кипения 108,1 оС. В воде изобутиловый спирт растворяется в количестве около 10 % при температуре 15 оС, хорошо растворяется в спирте, эфире и бензоле.

Амиловый спирт (С5Н11ОН) имеет молекулярную массу 88,15, плотность ρ=0,814, температуру кипения 137,8 оС.

Изоамиловый спирт (С5Н11ОН) – оптически не активный, имеет молекулярную массу 88,15, плотность ρ=0,814, температуру кипения 132,1 оС. Представляет собой маслянистую жидкость с очень характерным неприятным запахом. Пары изоамилового спирта раздражают слизистую оболочку и вызывают кашель. Он плохо растворяется в воде, но хорошо растворяется в эфире, спирте и бензоле.

Изоамиловый спирт (С5Н11ОН) – оптически активный, имеет молекулярную массу 88,15, плотность ρ=0,819, температуру кипения 129,4 оС. Представляет собой также маслянистую жидкость, имеющую более резкий запах, чем неактивный изоамиловый спирт.

Оба изоамиловых спирта составляют наиболее значительную часть сивушных масел, при этом активного спирта содержится немного меньше.

Все высшие спирты являются основными незаменимыми компонентами летучих примесей коньячных спиртов. Их содержание колеблется в пределах 1000...3000 мг/дм3.

Образование высших спиртов при брожении виноградного сусла зависит от многих факторов: расы дрожжей, условий брожения (аэробные или анаэробные) и др. Заметно влияет на образование высших спиртов в бродящем сусле величина рН. При рН 2,6 зафиксировано минимальное количество высших спиртов. При рН 4,5 содержание высших спиртов увеличивается в два раза, а при дальнейшем увеличении рН содержание высших спиртов слабо снижалось.

Заметно влияет на образование высших спиртов и температура среды (при температуре брожения от 15 до 35 оС). Максимум образования высших спиртов установлен при температуре 20 оС, а при температуре брожения 35 оС количество высших спиртов уменьшается в четыре раза.

Влияние факторов интенсификации роста дрожжей (биотин, тиамин, пантотеновая кислота и др.) зависит от природы источников азота.

В настоящее время доказано, что сивушные спирты образуются не только из аминокислот, но также из сахаров при их сбраживании. Итак, высшие спирты могут быть как вторичными, так и побочными продуктами спиртового брожения. В целом, образование высших спиртов зависит от суммарной активности обмена дрожжей.

Таким образом, в коньячном спирте высшие спирты имеют двоякое происхождение. Первая их часть является составным компонентом эфирных масел винограда, перешедших сначала в виноматериалы, а потом в коньячный спирт при их перегонке. Другая часть обусловлена жизнедеятельностью дрожжей, образующих высшие спирты как из сахара, так и из аминокислот в результате дезаминирования или переаминирования с последующим дезаминированием.

Высшие спирты являются токсичными веществами. Эта токсичность повышается с увеличением молекулярной массы. Если токсичность этилового спирта принять за единицу, то токсичность изобутанола будет равняться четырем, а изоамилового спирта - 9,25.

С салициловым альдегидом высшие спирты дают характерный красный цвет, что используется при их количественном определении.

Органические кислоты.

В выдержанных коньячных спиртах основными кислотами являются нелетучие кислоты, образованные при экстракции компонентов дуба (аминокислоты, дубильные вещества, ароматические и полиуроновые кислоты).

Основными кислотами свежеперегнанного коньячного спирта являются кислоты жирного ряда: муравьиная, уксусная, пропионовая, масляная, валерьяновая, капроновая, энантовая, каприловая, пеларгоновая, лауриновая, миристиновая и другие органические кислоты.

Ниже в таблице приведена краткая характеристика органических кислот жирного ряда в коньячных спиртах.

Таблица Основные кислоты свежеперегнанного коньячного спирта жирного ряд а

Название кислоты

Химичес-кая формула

Молеку-лярная масса

Плот-ность, г/см3, ρ

Темпер-тура плавле-ния, оС

Темпер-тура кипения, оС

Краткая характеристика

Муравьиная

Бесцветная жидкость с едким запахом, смешивается с водой, спиртом, эфиром

Уксусная

Бесцветная жидкость с характерным запахом, растворяется в воде, спирте, эфире, бензоле

Пропионовая

Бесцветная жидкость с острым запахом, растворимая в воде, спирте, эфире

Масляная

Бесцветная жидкость, растворимая в спирте, эфире, запах неприятный

Валерьяновая

Жидкость с характерным запахом, растворяется в спирте, эфире, хуже в воде

Капроновая

Маслянистая жидкость с характерным запахом, растворяется в спирте и эфире

Энантовая

Маслянистая жидкость с характерным запахом

Каприловая

Маслянистая жидкость, растворяется в спирте и эфире, бензоле хлороформе, горячей воде

Пеларгоновая

Растворяется в спирте, эфире, бензоле

Каприновая

Лауриновая

Бесцветные иглы, растворимые в эфире, бензоле, спирте. Перегоняется с паром воды

Миристиновая

В коньячных спиртах летучих кислот содержится от 80 до 1000 мг/дм3, а иногда и больше.

Кроме органических кислот, в коньячных спиртах и коньяках встречаются и минеральные кислоты. Главным образом, это сернистая и серная, образующаяся при ее окислении. Эти кислоты присутствуют в коньячных спиртах, изготовленных из сульфитированных виноматериалов. Количество общей сернистой кислоты (в перерасчете на SO2) в свежеперегнанном спирте может достигать 240 мг/дм3.

Величина рН в коньячных спиртах и коньяках заметно колеблется в зависимости от технологии, типа и их возраста. При фракционированной перегонке рН снижается. Например, если главная фракция имела рН 6,2, то средняя фракция (до крепости 42,5 %) имеет рН 4,0, а хвостовая – 3,2. Все это зависит как от содержания кислот, так и от крепости спирта, угнетающего диссоциацию карбокисильних групп. Поэтому в более крепких водно-спиртовых растворах величина рН одной и той же кислотности выше, чем в слабых растворах.

Наиболее резко изменяется рН в коньячных спиртах и коньяках в первые два года выдержки. Начиная с 10 лет выдержки рН практически не изменяется в пределах 4,1...4,0.

Сложные эфиры.

Основную часть эфиров в коньячных спиртах и коньяках представляют этиловые эфиры жирных кислот, содержание которых, в большинстве случаев, колеблется от 300 до 1600 мг/дм3. К ним, в основном, относятся муравьиноэтиловый и уксусноэтиловый эфиры.

Муравьиноэтиловый эфир (С3Н6О) имеет молекулярную массу 74, плотность 0,91678 г/см3, температуру кипения 54,3 оС. В воде легко растворяется при температуре 25 оС.

Уксусноэтиловый эфир (этилацетат) (С4Н8О2) имеет молекулярную массу 88,10, плотность 0,9006 г/см3, температуру плавления – 83,6 оС, температуру кипения – 77,1 оС. Это бесцветная жидкость с эфирно-фруктовым запахом. В любых соотношениях смешивается с многими органическими растворителями (спиртом, эфиром, бензолом и др.).

Кроме этих эфиров в коньячных спиртах и коньяках найдены такие этиловые эфиры жирных кислот: этилпропианат (С7Н12О), этилбутират (С7Н12О2), этилвалерианат (С7Н14О2), этилкапронат (С8Н16О2), этиленантат (С9Н18О2), этилкапринат (С12Н24О2), этиллаурат (С14Н28О2)и др.

Кроме этиловых эфиров жирных кислот в коньячных спиртах найдены эфиры пропилового, бутилового, амилового, гексилового спиртов и их изомеров.

Как в коньячных спиртах, так и в коньяках главным компонентом сложных эфиров является этилацетат и энантовый эфир, образующиеся, в основном, дрожжами в процессе брожения. В зависимости от расы дрожжей или условий брожения количество энантового эфира может изменяться. В целом, содержание эфиров в коньячных спиртах и коньяках зависит от концентрации кислот и спиртов.

Очень важным свойством сложных эфиров является их способность омыляться под действием щелочей, что используется для их количественного определения.

Следует отметить, что при этом уксусноэтиловый эфир омыляется значительно легче, чем эфиры более висококипящих кислот, что используется для определения энантовых эфиров в коньячных спиртах. С гидроксиламином сложные эфиры образуют гидроксаматы, дающие в присутствии трехвалентного железа характерный темно-синий цвет.

Альдегиды и ацетали.

Количество легколетучих альдегидов (алифатических) в коньячных спиртах находится в пределах 50...500 мг/дм3 абсолютного спирта. В целом, в коньячных спиртах найдены в значительных количествах такие легколетучие альдегиды, как уксусный, пропионовый, изомасляный и изовалериановый.

Уксусный альдегид (ацетальдегид, этаналь) (С2Н4О) имеет молекулярную массу 44,05; плотность ρ=0,783 кг/дм3, температуру плавления – 122,6 оС, температуру кипения – 20,8 оС. Это бесцветная легкоподвижная жидкость с резким характерным запахом, легко смешивается с водой, спиртом и эфиром. Реагирует с бисульфитом натрия и сернистым ангидридом.

Пропионовый альдегид (С3Н6О) имеет молекулярную массу 58,08; плотность ρ=0,807 кг/дм3, температуру плавления – 81 оС, температуру кипения – 49,1 оС. Это жидкость с удушливым запахом, смешивается со спиртом и эфиром, слабо растворимая в воде.

Изомасляный альдегид (С4Н8О) имеет молекулярную массу 72,0; плотность ρ=0,794 кг/дм3, температуру кипения – 64 оС.

Изовалериановый альдегид (С5Н10О) имеет молекулярную массу 86,13; плотность ρ=1,39 кг/дм3, температуру плавления – минус 51 оС, температуру кипения – 92,5 оС.

Все альдегиды в водных растворах присоединяют воду, поэтому они не поглощают свет в ультрафиолетовой области спектра. Очень важным свойством альдегидов является их реакция с бисульфитом и сернистой кислотой. Очень чувствительны альдегиды к действию окислителей, причем они способны и к самоокислению с образованием карбоновых кислот.

Характерной реакцией для альдегидов и кислот является взаимодействие их в кислой среде с 2,4-динитрофенилгидразином с образованием 2,4- динитрофенилгидразона, дающего в щелочной среде сильную красную окраску. Эту реакцию можно использовать для количественного определения альдегидов.

В коньячных спиртах общее содержание алифатических альдегидов колеблется в пределах от 30 до 300 мг/дм3. Основную часть из них составляет уксусный. Кроме того, в коньячных спиртах встречаются кротоновый, пропионовый, изомасляный и валерьяновый альдегиды.

При выдержке коньячных спиртов увеличивается только содержание уксусного альдегида, содержание остальных алифатических альдегидов снижается.

Альдегиды с коньячными спиртами образуют ацетали с выделением двух молекул воды. Стойкость ацеталей в щелочной среде значительно выше, чем в кислой, где они быстро омыляются до начальных альдегидов и спиртов.

В целом, образование ацеталей и полуацеталей в коньячных спиртах приводит к смягчению резких тонов в букете коньяка.

Согласно закону действия масс, в коньячных спиртах и коньяках основным фактором, влияющим на концентрацию ацеталей, является содержание спирта.

Важнейшими летучими соединениями, влияющими на качественные показатели коньяка, являются бутиленгликоль, ацетоин и диацетил, количество которых в коньячных спиртах составляет: бутиленгликоля – 6,1 мг/дм3; ацетоина – 4,6 мг/дм3 и диацетила – 1,6 мг/дм3. В коньячных спиртах содержатся еще и летучие амины, являющиеся хвостовыми примесями при перегонке виноматериалов.

Нелетучие вещества (экстрактивные вещества) коньячных спиртов представляют собой компоненты, извлеченные из дубовой бочки, и продукты их химических преобразований. Количество нелетучих веществ в коньячных спиртах зависит от температуры спиртов в процессе хранения, времени выдержки в бочках, емкости бочек, состава разных спиртов и ряда других факторов.

Французские коньяки содержат экстрактивных веществ от 4,5 до 12 г/дм3, армянские – от 9,86 до 9,62 г/дм3, итальянские – до 21,5 г/дм3, грузинские (выдержанные от 2 до 22 лет) – от 1,5 до 6,0 г/дм3.

Экстрактивные вещества при выдержке коньяков подвергаются разным химическим преобразованиям, образующим ряд летучих продуктов, таких как альдегиды, кислоты и др.

При выдержке коньячных спиртов в дубовой бочке происходит мацерация спиртом лигнина дуба и продуктов его распада (ароматических альдегидов и кислот), которые в дальнейшем подвергаются разным реакциям распада и полимеризации. Продукты дальнейшего преобразования лигнина в коньячном спирте очень разнообразные. В зависимости от растворимости в воде и эфире, а также летучести, лигниновый комплекс коньячных спиртов делится на ряд фракций:

· нелетучие, водо - и эфирорастворимые;

· нелетучие водорастворимые, эфиронерастворимые;

· летучие, водо - и эфирорастворимые;

· эфирорастворимые, водонерастворимые;

· водонерастворимые и др.

Водонерастворимый лигнин представляет собой ту часть продуктов мацерации из дубовой клепки, которая при разведении спирта водой выпадает в осадок (водонерасторимая фракция). Элементарный состав такого лигнина следующий: водород – 5,67 %; углерод – 59,09 %; метоксильные группы – 11,38 % (данные Егорова И. А. и Скурихина И. М.)

Водорастворимая фракция лигнинового комплекса коньячного спирта составляет 85 % от общего количества. В состав этой фракции входят разные глюкозиды, гемикетали и эфиры (ароматические компоненты лигнина). Водорастворимые вещества лигнинового комплекса коньячного спирта легко окисляются перманганатом при определении дубильных веществ.

Около 30 % лигнинового комплекса коньячного спирта представлено веществами, растворимыми в эфире. В состав этих веществ входит ряд ароматических альдегидов (ванилин, сиреневый альдегид, оксибензальдегид, конифриловый альдегид, синаповый альдегид) и ароматические кислоты (ванилиновая кислота, сиреневая кислота, оксибензойная кислота). Вкратце рассмотрим их характеристику.

Ванилин (С8Н8О3) имеет молекулярную массу 152, плотность ρ=1,056, температуру плавления 81,2 оС, плохо растворяется в воде, легко – в спирте, хлороформе, эфире, сероуглероде и растворах щелочи. Имеет темно-синюю флуоресценцию.

Сиреневый альдегид (С9Н10О4) имеет молекулярную массу 182, температуру плавления 113 оС, растворяется в эфире, этаноле, хлороформе, уксусной кислоте, горячем бензоле, тяжело – в воде и лигроине, не растворяется в петролейном эфире. Соли сиреневого альдегида, калия и натрия имеют желтый цвет, растворимы в воде и спирте.

Оксибензальдегид (С7Н6О2) имеет молекулярную массу 122, температуру плавления 116 оС, легко кристаллизуется из воды, растворяется в горячей воде, этаноле, эфире, в холодной воде не растворяется.

Конифриловый альдегид (С10Н10О3) имеет молекулярную массу 178, температуру плавления 82,5 оС, кристаллизуется из бензола, растворяется в метаноле, этаноле, эфире, хлороформе, растворяется в лигроине. Дает зеленую флуоресценцию.

Синаповый альдегид (С11Н12О4) имеет молекулярную массу 208, температуру плавления 108 оС, легко растворяется в спирте и уксусной кислоте, практически не растворяется в воде, бензоле и эфире. В минеральных концентрированных кислотах растворяется с образованием сине-красной окраски. Дает зеленую флуоресценцию.

В целом, ароматические альдегиды имеют решающее значение в образовании букета выдержанных коньяков. Они дают ряд характерных цветных реакций (наиболее известная реакция с флороглюцином в соляной кислоте).

Ароматические кислоты появляются в результате окисления ароматических альдегидов в коньячных спиртах. Это ванилиновая кислота с молекулярной массой 168 и температурой плавления 207...210 оС, хорошо растворимая в этаноле и эфире; сиреневая кислота с молекулярной массой 198 и температурой плавления 204,5 оС, легко растворимая в эфире, этаноле и хлороформе; оксибензойная кислота с молекулярной массой 138, плотностью ρ=1,443 кг/дм3, температурой плавления 215 оС.

Все ароматические кислоты дают сильную реакцию с реактивами Волин-Дениса. В трехлетнем коньячном спирте количество ванилиновой и сиреневой кислот составляет по 0,16 мг/дм3, в пятнадцатилетнем коньячном спирте – резко увеличивается и достигает 0,5 мг/дм³ каждый.

Дубильные вещества (таниди). Этих веществ в коньячном спирте даже при длительной выдержке в дубовых бочках сравнительно немного (до 0,25 г/дм3). Но в коньячных спиртах содержатся в большом количестве вещества, близкие по химическому составу к дубильным веществам. Все они объединены между собой наличием пирогалловых гидроксильных групп и имеют общее название: дубильные вещества коньячного спирта.

Скурихин И. М. в своих опытах доказал, что дубильные вещества в коньячных спиртах могут находиться не только в свободном положении, но и в связанном с лигнином, а таниды коньячных спиртов не представляют собой однородного комплекса.

В зависимости от способности адсорбироваться кожаным порошком и от растворимости в водных растворах, дубильные вещества разделяются на три фракции:

1. Водонерастворимые, легко выделяемые из раствора после отгонки спирта. Их количество составляет 20...36 % от суммы дубильных веществ, растворенных в коньячном спирте.

2. Водорастворимые, которые остаются в растворе после отгона спирта и адсорбируются кожаным порошком. Их количество составляет 36...60 % от общей суммы танидов коньячного спирта.

3. Водорастворимые, не сорбирующиеся кожаным порошком. Их количество составляет 20...30 % от суммы танидов.

В коньячных спиртах в результате гидролиза дубильных веществ в заметных количествах появляется элаговая и галловая кислоты. Свойства этих кислот характеризуются следующими данными:

Элаговая кислота (С14Н6О8) имеет молекулярную массу 302, температуру плавления 360 оС. Кислота тяжелорастворима в воде и спирте, нерастворима в эфире, с FeCl3 дает зеленую окраску. Кислота образуется при гидролизе дубильных веществ дуба.

Галловая кислота (С7Н6О5) имеет молекулярную массу 170, кристаллизуется из воды с одной молекулой воды, нерастворима в хлороформе, бензоле. Галловая кислота имеет антиоксидантное действие по отношению к терпенам и жирным маслам, является постоянным сопутствующим компонентом древесины дуба.

Углеводы и продукты их преобразований. Углеводы и продукты их преобразований в коньячных спиртах представлены простейшими моносахарами – фруктозой, глюкозой, ксилозой, арабинозой, рамнозой, маннозой и небольшим количеством декстринов. Кроме того, при купаже коньяка добавляют колер (продукт карамелизации сахарозы) и сахарозу.

Фруктоза (С6Н12О6) – кетоспирт, имеет молекулярную массу 180, температуру плавления 102...104 оС, плотность ρ=1,669 кг/дм3. Одна из форм фруктозы фруктопираноза может существовать в двух модификациях: α и β-формах. В кристаллах всегда находится β-D-фруктоза. В водных растворах D-фруктоза представлена в виде фруктопиранозы и фруктофуранозы.

Глюкоза (С6Н12О6) – имеет молекулярную массу 180, температуру плавления 146 оС, плотность ρ=1,544 кг/дм3. Это многоатомный альдегидоспирт.

Альдегидная форма глюкозы имеет четыре асимметрические атома углерода, а в циклической форме появляется пятый асимметрический атом. Поэтому D-глюкоза может существовать в двух модификациях: α и β-формах. α-D-глюкоза тяжело растворяется в воде, а β- D-глюкоза более растворима в воде.

Как и все другие моносахара, глюкоза является сильным восстановителем. Нагревание глюкозы в растворах минеральных кислот приводит к потере трех молекул воды и образованию оксиметилфурфурола – маслянистой жидкости с запахом переспевших яблок, имеющей сильные восстанавливая свойства. В дальнейшем это вещество распадается на левулиновую и муравьиную кислоты.

Ксилоза (С5Н10О5) – имеет молекулярную массу 150,13, температуру плавления 154 оС, плотность ρ=1,535 кг/дм3. Это кристаллическое вещество, в два раза менее сладкая, чем сахароза. Ксилоза восстанавливает Феллинговую жидкость в той же мере, как и глюкоза, а при кипячении с разбавленными минеральными кислотами дает фурфурол.

Арабиноза (С5Н10О5) характеризуется как восстановитель Феллинговой жидкости с образованием оксида меди. Молекулярная масса 150,13, температура плавления 160 оС, плотность ρ=1,585 кг/дм3. Арабиноза представляет собой кристаллическое вещество, менее сладкая на вкус, чем глюкоза. Под действием разбавленных минеральных кислот теряет три молекулы воды и образует фурфурол.

Рамноза (С6Н12О5) кристаллизуется из одной молекулой воды, имеет молекулярную массу 182,17; гидрат рамнозы плавится при температуре близкой 93…97 оС, а безводная рамноза – при 122…126оС. Рамноза плохо растворяется в эфире, хорошо – в воде и спирте. На воздухе безводная рамноза поглощает воду и переходит в моногидрат. Рамноза имеет сладкий вкус, но сахароза слаще ее втрое, а глюкоза – вдвое.

Сахароза (С12Н22О11) при купаже коньяков является их неотъемлемой частью. Молекулярная масса 342,3, температура плавления 184…185оС, плотность ρ=1,583 кг/дм3. Это дисахарид, расщепляющийся под действием разбавленных минеральных кислот или фермента инвертазы на смесь равных количеств D-глюкозы и D-фруктозы (инвертный сахар).

Сахароза представляет собой кристаллическое бесцветное вещество, сладкое на вкус. Расплавленная сахароза при охлаждении застывает в стекловидную массу. Сахароза распадается до вещества, которое не кристаллизуется (карамель) при температуре выше точки плавления.

В эфире и хлороформе сахароза нерастворима, но хорошо растворяется в воде, в абсолютном спирте малорастворима, в водно-спиртовых растворах – лучше.

Колер представляет собой продукт карамелизации сахарозы при температуре 180…200оС, т. е. выше температуры плавления сахарозы. При карамелизации происходит дегидратация сахарозы с образованием разных полимерных продуктов: карамелей, органических кислот и других соединений. Цвет колера зависит не от бесцветных ангидридов сахарозы, а от гуминовых кислот, которые при этом образуются. Колер содержит от 35 до 60 % сахара. Он хорошо растворяется в коньячном спирте и воде. При разведении 1 мл в 1 л воды его цвет должен отвечать цвету 10 мл 0,1н йода в 1 л воды. Плотность колера равна 1,3...1,4 кг/дм3.

Если в коньячных спиртах сахароза не находится, то в коньяках (в результате добавления сахарного сиропа) ее содержание – до 25 г/дм3. Колер в основном добавляют только к ординарным коньякам.

Альдегиды фуранового ряда . Из этих альдегидов в коньячных спиртах найдены фурфурол, метилфурфурол и оксиметилфурфурол.

Фурфурол (С5Н4О2) имеет молекулярную массу 96,08, плотность ρ=1,1598 кг/дм3, температуру плавления – 38,7 оС, температуру кипения – 161,7 оС. Это бесцветная жидкость с характерным запахом, хорошо растворяется в спирте и эфире. При хранении фурфурол медленно раскладывается с образованием муравьиной кислоты и гуминовых веществ коричневого цвета. Фурфурол в кислой среде дает характерный розовый цвет с анилином. Эта цветная реакция используется для количественного определения.

Метилфурфурол (С6Н6О2) имеет молекулярную массу 110,0, плотность ρ=1,1072 кг/дм3, температуру кипения – 187 оС. Легко растворяется в тридцати частях воды.

Оксиметилфурфурол (С6Н6О3) имеет молекулярную массу 126, температуру плавления – 35...35,5 оС, температуру кипения – 114...116 оС. Хорошо растворяется в этаноле, воде, уксусноэтиловом эфире. Образуется при гидратации глюкозы и фруктозы.

Минеральные и другие вещества. В среднем в коньячных спиртах содержание золы колеблется от 0,034 г/дм3 и выше, в молодых коньячных спиртах до 0,118 г/дм3, в старых (больше 20 лет выдержки) около 1 % от экстракта.

Состав зольных элементов коньячных спиртов и коньяков во многих случаях зависит от состава дерева дуба. Можно ожидать присутствие К, Са, Na, Mg, Cl, P, Si и др. При перегонке виноматериалов, вследствие контакта с медной и железной аппаратурой, в коньячный спирт переходит заметное количество железа и меди. Коньячные спирты, сохраняемые в алюминиевых цистернах без покрытия, могут содержать до 20 мг/дм3 алюминия, который негативно отражается на вкусе и аромате спиртов.

При выдержке коньячных спиртов происходит закономерное увеличение экстрактивных веществ и золы, зольность (% золы в экстракте) при этом снижается, что обусловлено выпадением в осадок ряда элементов, входящих в состав минеральных веществ. Заметно уменьшается при выдержке коньячных спиртов количество таких элементов как Cu, Fe, Mg, что объясняется их осаждением в виде труднорастворимых солей дубильных и органических кислот. Содержание К і Na увеличивается в результате экстракции из древесины дуба и концентрирования вследствие испарения спирта из бочек при выдержке.

Согласно действующим технологическим инструкциям, в коньячных спиртах и коньяках допускается следующее количество тяжелых металлов: свинец – не допускается, железо – не более 1 мг/дм3, олово – не более 5 мг/дм3 и медь – не более 8 мг/дм3.

В коньячных спиртах, кроме минеральных веществ, содержатся и азотистые вещества, количество которых составляет около 2 % от экстрактивных веществ спиртов. Так, в 24-летнем коньячном спирте содержание общего азота достигает 82 мг/дм3. Среди азотистых веществ в коньячных спиртах преобладают такие аминокислоты как гликокол, глютаминовая кислота, пролин и др.


Publication in print media: Актуальные вопросы судебной медицины и права, Казань 2010 Вып. 1 ГКУЗ «Республиканское бюро судебно-медицинской экспертизы МЗ РТ»

Судебно-медицинская диагностика причины смерти в случаях алкогольной интоксикации нередко вызывает серьезные затруднения. Это, в первую очередь, относится к тем случаям, когда отсутствуют достаточно выраженные изменения внутренних органов, а концентрация этанола в крови либо незначительна, либо он вообще не обнаруживается. В подобных ситуациях объективным доказательством алкогольной интоксикации может служить обнаружение продуктов окисления этанола, в частности ацетальдегида, так как он служит одной из причин похмельного состояния, долго сохраняясь в организме .

Ацетальдегид (АЦ) – уксусный альдегид, органическое соединение, легко летучая бесцветная жидкость с удушающим запахом, смешивается во всех отношениях с водой, спиртом, эфиром. АЦ обладает всеми типичными свойствами альдегидов. В присутствии минеральных кислот он полимеризуется в жидкий тримерный паральдегид и тетрамерный метальдегид. Пары тяжелее воздуха, на воздухе окисляется с образованием перекисей. При разбавлении водой приобретает фруктовый запах. Применяют в огромных масштабах в производстве уксусной кислоты, уксусного ангидрида, различных фармацевтических препаратов и т.д. .

В организме человека постоянно присутствует эндогенный этанол, образующийся в биохимических процессах. Источник эндогенного этанола – эндогенный ацетальдегид, являющийся продуктом углеводного обмена, который образуется, главным образом, в результате декарбоксилирования пирувата при участии соответствующего фермента пируватдегидрогеназного комплекса. По литературным данным концентрация эндогенного этанола в крови здоровых людей в среднем составляет 0,0004 г/л; максимальные значения не превышают сотых долей г/л, концентрация эндогенного ацетальдегида в 100-1000 раз меньше. АЦ является основным промежуточным метаболитом этанола. Основной путь – с участием алкогольдегидрогеназы по схеме:

С 2 Н 5 ОН + NAD + ↔ СН 3 СНО + NADH + H + .

Образующийся АЦ окисляется альдегиддегидрогеназой (АДГ) до ацетата . В течение 1 часа в организме человека может быть метаболизировано 7- 10 г алкоголя, что соответствует снижению его концентрации в среднем на 0,1-0,16‰. Окислительные процессы могут активироваться и достигать 0,27‰/ч. Длительность токсикодинамики определяется, в первую очередь, количеством принятого алкоголя. При приеме больших количеств АЦ может сохраняться в организме 1 сутки и дольше. В течение 1-2 ч после взятия крови у живых лиц ферментативное окисление алкоголя прекращается, равно как и после наступления смерти в крови трупов . Основным местом образования АЦ из этанола и последующего его окисления является печень. Поэтому наибольшее количество ацетальдегида в опытах определяли в печени, затем в крови, наименьшее – в цереброспинальной жидкости.

Идентификацию АЦ в биологических объектах проводили на газовом хроматографе «Кристаллюкс-4000М», снабженном компьютерной программой «NetchromWin», пламенно-ионизационным детектором на капиллярных колонках. Использовались три капиллярные колонки:

  • колонка №1 30м/0,53 мм/1,0µ, ZB – WAX (Polyethylen Glycol);
  • колонка №2 30м/0,32 мм/0,5µ, ZB – 5 (5% Penyl methyl polysiloxane);
  • колонка №3 50 м/0,32 мм/0,5µ, HP – FFAP.

Температура колонок 50 °С, температура детектора 200 °С, температура испарителя 200 °С. Скорость потока газа-носителя (азота) 30 мл/мин, воздуха 500 мл/мин, водорода 60 мл/мин.

Отмечали хорошее разделение смеси (рис. 1): ацетальдегид+диэтиловый эфир+ацетон+этилацетат+этанол+ацетонитрил.

Рис. 1. Распределение веществ.

Обнаружению и определению ацетальдегида (табл. 1) не мешают ацетон, метанол, этанол и другие алифатические спирты, этилацетат, хлорорганические соединения, ароматические углеводороды, диэтиловый эфир.

Таблица 1. Сравнительные результаты идентификации ацетальдегид в смеси с другими веществами

Колонку №3 HP – FFAP не использовали для количественного анализа, так как такой анализ требует больших временных и экономических затрат.

Построение калибровочного графика ацетальдегида. Для построения ка-либровочного графика использовались водные растворы ацетальдегида (х.ч. для хроматографии) с концентрацией 1,5; 15; 30; 60; 150 мг/л. В качестве внутреннего стандарта – водный раствор ацетонитрила с концентрацией 78 мг/л.

Методика исследования: во флакон из стеклодрота, содержащий 0,5 мл 50% раствора фосфорно-вольфрамовой кислоты, помещали 0,5 мл внутреннего стандарта – раствор ацетонитрила с концентрацией 78 мг/л и 0,5 мл раствора ацетальдегида с известной концентрацией. Для уменьшения парциального давления паров воды к смеси добавляли 2 г безводного сульфата натрия. Флакон закрывали резиновой пробкой, фиксировали металлическим зажимом, нагревали в кипящей водяной бане в течение 5 минут и 0,5 мл тёплой парогазовой фазы вводили в испаритель хроматографа. Производили расчёт фактора чувствительности (табл. 2) для 2-х колонок:

Таблица 2. Расчёт фактора чувствительности

А ац, мг/л Колонка № 1 Колонка № 2
Sх, в мв/мин Sст, в мв/мин Sх, в мв/мин Sст, в мв/мин
150 69 10 15 2
60 39 11 4.5 1.7
30 24 14 3 2
15 10 12 1.2 1.5
1,5 1.2 15 0.18 2

Обозначения: А ац – концентрация ацетальдегида; Sх – площадь пика ацетальдегида; Sст – площадь пика ацетонитрила.


Рис. 2. График зависимости отношения площадей от концентраций ацетальдегида для 1-ой колонки.

По вышеописанной методике проводили исследования из биологических объектов (кровь, моча, вещество головного мозга, печень, почка и др.).

Исследовано 40 случаев при подозрении на отравление «суррогатами алкоголя». Результаты исследования этих случаев сведены в таблицу 3.

Таблица 3. Распределение этанола

Случай из практики: доставлен труп мужчины 40 лет из реанимационного отделения. В стационаре больной находился 4 часа, в анамнезе для лечения использован «Эспераль». В процессе судебно-химического исследования биологических объектов дисульфирам и другие лекарственные вещества не обнаружены. В крови этиловый алкоголь не обнаружен. Обнаружен АЦ с концентрацией: 0,5 мг/л в крови, 28 мг/л в желудке, 2 мг/л в печени, 1 мг/л в почке, 29 мг/л в кишечнике.

При одновременном употреблении этилового алкоголя и дисульфирама (тетурам) образуется АЦ. Механизм заключается в том, что дисульфирам ингибирует фермент алкогольдегидрогеназу, задерживая окисление этанола на уровне АЦ, что приводит к интоксикации организма человека. Некоторые лекарственные препараты могут оказывать тетурамоподобную активность, вызывая непереносимость к алкоголю. Это, прежде всего, хлорпропамид и другие противодиабетические сульфаниламидные препараты, метронидазол и т.п., производные нитро-5- имидозола, бутадион, антибиотики .

Выводы

  1. Использован современный высокочувствительный газовый хромато-граф «Кристаллюкс-4000М» с детектором ДИП и компьютерной программой «NetchromWin», который позволяет определять малые концентрации АЦ, близкие к эндогенным.
  2. Предложены новые селективные, высокочувствительные капиллярные колонки с фазами ZB-WAX, ZB-5, позволяющие обнаружить до 100 мкг (0,001%о) ацетальдегида в исследуемых пробах.
  3. Подобраны оптимальные условия, позволяющие проводить газо-хроматографический скрининг ацетальдегида и следующих органических растворителей: алифатических спиртов, хлорорганических растворителей, ароматических углеводородов, этилацетата, ацетона и диэтилового эфира в течение 15 минут.
  4. Рекомендовано проводить количественное определение как этанола, так и ацетальдегида при диагнозе «алкогольная интоксикация».

Список литературы

  1. Альберт А.// Избирательная токсичность. – М., 1989. – Т.1 – С. 213.
  2. Моррисон Р., Бойд Р.// Органическая химия, пер. с англ.-1974-78гг
  3. Савич В.И., Валладарес Х. АГусаков., Ю.А., Скачков З.М. // Суд.-мед. эксперт. – 1990. – № 4. – С. 24-27.
  4. Успенский А.Е., Листвина В.П.// Фармакол. и токсикол. – 1984. – №1. – С. 119-122.
  5. Шитов Л.Н.Методы исследования и токсикология этилового алкоголя (химико-токсикологическая лаборатория ЯОКНБ). – 2007.


Copyright © 2024 Медицинский портал - Здравник.